CICO: A Practical Shared-Memory Programming Performance
Model*

James R. Larus, Satish Chandra, David A Wood!
larus@cs.wisc.edu
Computer Sciences Department
University of Wisconsin—-Madison
1210 West Dayton Street
Madison, WI 53706 USA
608-262-9519

August 16, 1993

Abstract

A programming performance model provides a programmer with feedback on the cost
of program operations and is a necessary basis to write efficient programs. Many shared-
memory performance models do not accurately capture the cost of interprocessor communi-
cation caused by non-local memory references, particularly in computers with caches. This
paper describes a simple and practical programming performance model—called check-in,
check-out (CICO)—for cache-coherent, shared-memory parallel computers. CICO consists
of two components. The first is a collection of annotations that a programmer adds to a pro-
gram to elucidate the communication arising from shared-memory references. The second
is a model that calculates the communication cost of these annotations. An annotation’s
cost models the cost of the memory references that it summarizes and serves as a metric to
compare alternative implementations. Several examples demonstrate that CICO accurately
predicts cache misses and identifies changes that improve program performance.

1 Introduction

Shared memory in parallel computers provides the valuable abstraction of a shared address
space in which processors communicate by reading and writing memory locations. This shared
name space simplifies many programs by making data structures processor-independent, which
facilitates load balancing [26]; allowing pointer-based data structures, which are necessary for
sophisticated algorithms; and freeing programs from per-processor memory limits, which permits

*Presented at: Workshop on Portability and Performance for Parallel Processing, Southampton University,
England, July 13-15, 1993. To appear: Ferrante & Hey eds., Portability and Performance for Parallel Processors.
Copyright ©John Wiley & Sons, Ltd. Also, University of Wisconsin, Computer Sciences Department Technical
Report #1171.

tThis work is supported in part by NSF Grants CCR-9101035 and MIP-9225097, NSF Presidential Young
Investigator Award CCR-9157366, a University of Wisconsin Graduate School Grant, and by donations from
Digital Equipment Corporation, Xerox Corporation, and Thinking Machines Corporation. Our Thinking Machines
CM-5 was purchased through NSF Institutional Infrastructure Grant No. CDA-9024618 with matching funding
from the Univ. of Wisconsin Graduate School.

effective use of a machine’s total memory. The shared-memory abstraction, however, hides
important details of how physical memory is partitioned and how values are communicated
among processors, which leads programmers to write inefficient programs.

Shared memory is implemented either with software, hardware, or a combination of the
two. Purely software systems, such as Li’s shared virtual memory [29], implement a shared
address space without shared-memory hardware by using the virtual-memory hardware available
in most machines to detect non-local memory references. These references cause traps, which
invoke system software that copies pages of data among processors. Another approach is to have
compiled code provide a shared address space on a message-passing machine. Compilers, such
as Vienna Fortran [18, 41] and Fortran D [24], implement a shared address space by detecting
remote memory references (primarily at compile time) and sending data between processors with
explicit messages.

Purely software solutions perform poorly for many programs, so many forms of shared-
memory hardware have been proposed and built. Non-uniform access machines, such as the
BBN Butterfly [36], physically partition memory among processors, which results in sharply
higher costs for remote accesses. However, most shared-memory computers, even if memory
is partitioned, use caches to keep copies of a memory location close to the processors that are
actively accessing it. Caches reduce effective memory access time and communication network
load since interprocessor communication occurs only when a block is brought into or removed
from a cache. A major issue in these systems is keeping cached copies consistent as processors
modify memory locations. Solutions to this cache coherent problem distinguishes several classes
of parallel computers. Multis [6] are bus-based computers in which all processors watch mem-
ory accesses occurring on a shared bus and modify their caches appropriately. Directory-based
computers—such as Stanford DASH [27] and MIT Alewife [1]—eliminate the non-scalable bus
by having hardware—and sometimes software—maintain a directory that records which proces-
sors hold copies of a cache block. A cache-coherence protocol uses the directories to serialize
conflicting updates and to invalidate copies at updates.

Cache-only (COMA) machines eliminate the memory underlying caches in cache-coherent
machines and manage main memory as a cache. COMA hardware and protocols are complex
since they must ensure that a copy of each location remains cached. It is not yet clear whether
the model in this paper works for this type of machine.

In cache-coherent, shared-memory machines, a memory reference that requires interprocessor
communication is more expensive than a reference satisfied by the local cache. For example,
in the Stanford DASH computer, a read from the local cache can take a single cycle, while
a remote memory read requires from 34 to 132 cycles [28]. Unfortunately, the behavior and
associated cost of a memory reference is difficult to predict. On a parallel computer, the state
of a processor’s cache depends not only on a processor’s previous memory references, but also
on other processors’ reference patterns. Without a technique for modeling a cache’s externally-
visible behavior (which locations it has cached), a programmer has few ways of understanding
and improving a program’s performance on this type of computer.

Programmers rarely analyze a program by simulating a particular computer. Instead, they
rely on simplified models, which we call programming models, that abstract a machine’s details.
A programming model has a semantic component that describes how operations behave and
a performance component that describes how rapidly operations execute. For most purposes,
simple, qualitative programming models suffice. For example, in the sequential domain, asymp-
totic algorithm analysis assumes unit cost for operations and counts the number of times each
operations executes. However, even simple programming performance models help in writing
efficient programs. More sophisticated models, which may be more difficult and costly to apply,

become necessary when the simpler models are not accurate enough.

Unfortunately, no practical and accurate programming performance model exists for shared
memory. The most common model is naive shared memory, which assumes all memory references
are equally cheap (or costly). Even on a simple, shared-bus multiprocessor, such as the Sequent
Symmetry, this model does not accurately capture hardware behavior [21]. For example, on
this computer, a memory reference that hits in the local cache is roughly 20 times faster than
a reference to main memory. The discrepancy is even larger on more recent machines—for
example, 100 times on Stanford DASH [27]—and is likely to continue increasing. Theoretical
models, such as PRAMs [17, 16, 38|, abstract too far from real machines to provide a practical
programming model, and consequently do not model features of real machines, such as caches.

Programs written under an incorrect or inaccurate model often perform poorly and their
performance does not scale because of bottlenecks and poor hardware utilization. Programmers
who are unaware of true costs use hardware ineffectively because they unnecessarily invoke
expensive operations and overuse resources, which causes performance-limiting bottlenecks. For
example, in comparing shared-memory and non-shared-memory algorithms, Ngo and Snyder
ran an LU factorization of a matrix on three shared-memory computers [32]. The naive shared-
memory version of the program allowed any processor to update any portion of the matrix.
Another version of the program was structured like a message-passing program. It partitioned
the matrix among the processors so only one processor updated each portion. The latter program
ran faster on all three shared-memory machines because data remained in processors’ caches and
the increased data reuse reduced interprocessor communication.

Shared-memory communicalion is the interprocessor message traflic caused by cache misses
and invalidations. One part is the coherence traflic when processors exchange values or appear
to exchange values because of false sharing [15]. The other part is the conflict and capacity
misses caused by caches of finite size and associativity [23]. A programmer or compiler can
reduce both aspects of shared-memory communication by modifying a program and its data
structures to use caches more effectively. However, to make such a change, a programmer or
compiler must understand why shared-memory communication occurs and be able to evaluate
alternative program organizations.

This paper describes in detail the Check-In, Check-Out (CICO) model for reasoning about
shared-memory communication in cache-coherence parallel computers. The model has been
briefly mentioned elsewhere [22]. The model is less precise, but far easier to understand and
employ than a detailed description of a particular cache-coherence protocol. CICO describes the
shared-memory communication in a broad class of cache-coherent, shared-memory computers
without attempting to precisely describe the exact behavior or cost of this communication on a
particular machine.

Section 2 describes the CICO model. Section 3 shows how the model can be used to im-
prove programs’ performance. Section 4 briefly describes how hardware can also use the CICO
annotations to improve programs’ performance. Finally, section 5 describes related work.

1.1 Message-Passing Programming Model

The principal competitor to shared-memory programming is message passing. Other parallel
programming models, such as data parallelism or actors, are mechanisms for specifying actions
rather than accessing data, and are orthogonal to these two models. Message passing, unlike
shared memory, combines a difficult semantic model with a simple performance model. It is
worth contrasting briefly the advantages and disadvantages of the two models.

Message passing uses send and receive operations to communicate values between processors’

distinct address spaces. These operations clearly identify the points at which communication
occurs, which facilitates calculating the communication cost. On the other hand, these oper-
ations also introduce new language semantics that sharply distinguish shared and local data.
Shared data can only be read with the explicit cooperation of its producer and consumer, must
be copied (and consequently renamed) to be shared, and must be carefully updated by the
program to remain consistent. For programs with static communication patterns and flat data
structures, such as arrays, these considerations may not be a serious impediment. In other
programs, however, these factors greatly complicate message-passing programming.

By exposing the underlying hardware primitives, message passing operations identify in-
terprocessor communication and facilitates performance modeling. A simple model, which is
commonly used by compilers [19, 34], attributes a uniformly high cost to messages, independent
of their size or destination. Although crude, this model identifies communication as a major
bottleneck and suggests effective optimizations such as combining multiple sends into a single
message and overlapping communication and computation. More complex performance models
account for interconnection network topology [7].

2 CICO Shared-Memory Performance Model

Unlike message-passing programs, communication in shared-memory programs is not easily iden-
tifiable. In cache-coherent, shared-memory computers, interprocessor communication occurs
when a memory reference misses in a cache and the hardware coherence protocol [2, 5] requests
a copy of the referenced datum from another processor, which may cause outstanding copies
to be invalidated. This mechanism offers several advantages: caches dynamically adapt to a
program’s reference pattern, the replicating data retains the same address as the original, and
the hardware ensures a globally coherent view of data. However, these advantages become dis-
advantages when trying to understand a program’s communication. The state of a location (i.e.,
where its copies are cached) depends on the memory-reference history of the processors and the
details of the coherence protocol. The protocol’s operation (and cost), in turn, depends on the
memory’s state.

An accurate, but slow and complex method of calculating the cost of a memory access is
to simulate a particular machine in detail and record which statements cause interprocessor
communication [11, 14, 35]. Simulation, because it is so time-consuming, is generally limited to
studying short programs with small data sets.

For many programmers, a more attractive approach would trade accuracy for simplicity.
The CICO performance model makes three approximations that permit reasoning about cache’s
externally-visible behavior in a cache-coherent parallel computer.

1. Communication occurs only at the points in a program demarcated by CICO annotations.
A program’s author adds annotations to the program to describe the movement of data
in and out of the cache. The annotations are notations that only describe how data
moves in and out of the cache. Since they are declarative, not imperative, they do not
affect a program’s semantics or a cache’s operation. The programmer uses annotations to
describe and reason about cache behavior, not to implement software cache coherence (cf.
[8, 13, 31]). The advantage of summarizing cache behavior with these annotations is that
the programmer only needs to study the communication at the annotations and need not
reason about every memory reference.

Moreover, the same annotations can also function as directives to a memory system de-
signed to exploit them [22]. In this case, these annotations provide a mechanism by which

a program can inform the memory system of upcoming memory references, so the mem-
ory system can anticipate them to improve performance. To distinguish the two uses of
annotations, we will call them directives when they pass information at run time.

2. Processor caches are fully associative. Uniprocessor cache misses occur because caches
have finite size and associativity [23]. Unlike capacity misses due to finite size, conflict
misses due to limited associativity are difficult to understand and predict because they
depend on the relative location of objects in memory.

3. Communication at annotations can be attributed a cost with a simple, three-state model
that ignores network and directory contention. Incorporating these issues in the CICO
model is difficult, since the annotations collapse a sequence of memory references that
occur over a period of time into a single event. The CICO cost model, however, computes
a lower bound on communication cost, which provides a useful basis for reasoning about
communication.

2.1 CICO Annotations

CICO relies on three annotations to delimit portions of a program in which a memory location
resides in a processor’s cache. The first annotation indicates the beginning of an interval in
which a processor expects to use a block:

check out X [Expect exclusive access to block
check out S Expect shared access to block

check_out X asserts that the processor performing the check-out expects to be the only processor
accessing the block until it is checked-in. check_out_S asserts that the processor is willing to
share (read) access to the block. Operationally, the check_out annotations fetch a copy of the
block into the processor’s cache, as if the processor directly referenced the block.

The next annotation, check_in, marks the end of an interval in which a processor uses
a block. An interval ends either because of a capacity miss in the cache or because another
processor accesses the checked-out block.

check_in Relinquish a block

Operationally, the check_in annotation flushes the block from the processor’s cache, as if the
processor had replaced it upon a cache conflict.

Communication cannot be eliminated from parallel programs. An important step to reduce
the impact of communication is to overlap it with computation by prefetching data:

prefetch X Expect exclusive access to block in near future
prefetch S Expect shared access to block in near future

prefetch X (prefetch.S) asserts that a processor performing a prefetch to a block is likely to
access it exclusive (shared) in the near future. Operationally, this annotation brings the block
into its cache while the processor continues the computation. This paper does not use this
annotation.

To simplify the notation, we frequently apply an annotation to a range of memory locations,
for example: check_out X A[1:N]. This notation is a shorthand for performing a check_out X
on every cache block in the range of locations. The degenerate case, check_out X A[i], checks-
out element 7 in array A, even if the value spans more than one cache block.

2.2 Adding Annotations

This section describes an approach for annotating cache-block race-free programs with CICO
primitives. A program is cache-block race-free if it contains no data races and no unsynchronized
false sharing [15]. Consequently, when two processors access the same cache block, they must
execute a synchronization event between their accesses. These rules place CICO annotations
in race-free programs so as to capture the interprocessor communication caused by a cache-
coherence protocol. The rules can also be used, with a loss of accuracy, to annotate programs
containing races.

Assume for the moment that processors have infinite, fully-associative caches so we need not
worry about cache replacements. Partition a program into epochs, which are code segments that
execute between two synchronization events. A program can be divided into epochs by splitting
its control-flow graph at synchronization points. Each connected component of the graph is an
epoch. Upon entry to an epoch, processor p imports data from other processors by checking-out
cache blocks that it will access during the epoch. Processor p need not check-out data already
in its cache. Upon leaving an epoch, a processor exports data to other processors by checking-in
cache blocks that may be accessed subsequently by another processor. It also checks-in blocks
that it will not access in subsequent epochs.

To apply these rules, a programmer may need to introduce several approximations. In some
programs, a programmer cannot predict at the beginning of an epoch exactly which data a
processor will access. In this case, the programmer can either check-out all data that might
possibly be accessed or move check-outs closer to data references. The first solution causes the
model to overestimate the communication cost. The second solution is more precise, but may
be more difficult to apply and reason with, as in the degenerate case in which each memory
reference is annotated. In addition, when a programmer cannot predict which processor will
use a block after an epoch, the block must be conservatively checked-in. In all of these cases,
improved knowledge of the program’s sharing pattern increases the accuracy of the annotation
and may identify program improvements that increase performance.

In an actual computer, a cache’s size constrains the amount of data that a processor can
check-out. To model a finite cache, a programmer must add check-ins that flush data, so as
not to exceed the cache’s capacity. These check-ins, in turn, may require additional check-outs
to bring data back into the cache. These additional annotations illuminate the high cost of
cache replacement, which requires interprocessor communication to retrieve data evicted from
the cache.

These rules for inserting annotation do not enable a programmer to predict the cost of
the cache-block races. The restriction to cache-block race-free programs permits the model to
capture data movement in and out of caches. Cache block races cause timing-dependent com-
munication as one processor steals a block from another processor. These races are undesirable,
not only because they are difficult to model accurately, but also because they are expensive on
a real computer.

2.3 CICO Cost Model

The CICO cost model described in this section computes a cost of shared-memory communication
by attributing a cost to each CICO annotation. By analyzing a program to determine how
many times an annotation executes, a programmer can determine the communication cost of
the annotation. If the annotation accurately models the cache’s behavior, the cost attributed
to the annotation equals the communication cost of the memory references that the annotation

Read, Write

Figure 1: CICO performance model. A cache block can be in one of three states: idle, shared, or exclusive.
Transitions between states occur at CICO annotations and are labeled with the annotation (CO is check_out,
CI is check_in, PF is prefetch) and processor (p or ¢) that caused the transition. In the diagram, processor
p obtains a block in the idle state and a distinct processor ¢ operates on the block when it is not idle. A block
becomes idle when the last shared or only exclusive copy is checked-in. The processor that causes a transition

incurs a communication cost.

summarizes.

In the CICO cost model, the communication cost of CICO annotations is modeled with the
aid of an automaton with three states: idle, shared, or exclusive (see Figure 1). Each cache block
has its own automaton. Initially, every block is idle, which means that no cache has a copy.
Transitions between states occur at CICO annotations. Edges in the automaton are labeled
with the annotation that caused them. For example, if a block is idle, a check_out X changes
the block’s state to ezclusive. The processor causing a transition incurs the communication cost
associated with an arc.

Communication costs can be modeled in three ways. The first uses values from an actual
machine. The advantage of this approach is that the costs accurate model at least one machine.
However, in many cases, these values are too machine- and configuration-specific. A more general
approach uses values that are asymptotically correct for a large class of machines. Operations
that execute asynchronously, such as prefetches or check-ins, are unit cost. Operations that
require a synchronous message exchange, such as check-outs, require time proportional to a
round-trip message time: in many machine, the cost of a message grows as O(lg P), where
P is the number of processors. Finally, the transition Shared — Fazclusive has worst-case
cost proportional to O(P) since all extant copies must be invalidated by explicit messages or
a broadcast. The final model, which suffices for many purposes, attributes a unit cost to each
transition that requires synchronous communication. Table 1 compares the three models.

Initial State | Action Final State | Actual | Asymp | Unit
Cost Cost | Cost
Idle prefetch X | Exclusive 8 0(1) 0
check out X 242 O(lg P) 1
prefetch.S | Shared 8 0(1) 0
check_out_S 242 O(lg P) 1
Exclusive check_in Idle 16 0(1) 0
checkout X | Exclusive 996 O(lg P) 1
check_out_S | Shared 996 O(lg P) 1
Shared check_in Idle | Shared 8 0(1) 0
checkout X | Exclusive 1285 O(P) 1
checkout_S | Shared 242 O(lg P) 1

Table 1: Costs for transitions in three CICO performance models for directory-based shared-memory computers.
The actual costs are for the Diry SW protocol with 64 processors and 100 cycle message latency. prefetch and
check_in execute asynchronously and only incur the operation initiation cost. The cost of a check_out depends
on the state of the cache block and can be thousands of cycles if a broadcast is necessary to invalidate outstanding
copies. The asymptotic costs show how costs increase with the number of processors P in a machine. Finally, the

unit cost model only counts the synchronous operations.

3 Performance Tuning With CICO

This section presents three examples of how the CICO model can be used to understand and
improve shared-memory programs. In addition, it contains measurements that confirm the unit
cost model’s predictions and demonstrate the predicted performance improvement.

One thing that we do not provide is rules for transforming programs to improve their shared-
memory performance. Qur general approach is to reduce unnecessary communication by increas-
ing a program’s reuse of data already in its cache. The changes for a particular program depend
on the program’s structure and must account for issues orthogonal to this model such as load
balancing and task granularity. CICO simply provides a framework for reasoning about a pro-
gram’s shared-memory communication and for comparing alternative strategies.

3.1 Matrix Multiplication

As a simple example to illustrate the CICO model, consider the well-known problem of multiply
dense N X N row-major matrices. For simplicity, N is a multiple of P, the number of processors;
matrices are stored in row-major order; and each processor p computes the N/ P rows, L, to U,,
of the product:

for ¢ := L, to U, do
for L := 1to N do
for j:=1to N do
Ali, j] = AL,] + Bl K] * CIk, jl
od
od
od

The placement of the annotations depends, in part, on the relative size of the matrices and
cache. In the best, but least interesting case, all three matrices fit in a cache and each processor
only needs to check-out its portion before the loops and check it in after.

check_out X A[L,:U,, 1:NJ;
check_out_S B[1:N, 1:N], C[1:N, 1:NJ;
for ¢ := L, to U, do
for £k :=1to N do
for j :=1to N do
Al) = Al J] + B, K * Clk,)
od
od
od
check_in A[L,:U,, 1:N]; B[1:N, 1:N], C[1:N, 1:NJ;

The amount of communication is O(N?). Matrices of this size do not require parallel computers
(at least until caches become much larger).

A more interesting case, in which a cache can hold at least one row, but not N rows, we
model by checking-out each row as early as possible:

for ¢ := L, to U, do
check_out X A[i, 1:NJ;
for £ := 1to N do
check_out_S BJ[i, k], C[k, 1:NJ;
for j :=1to N do
Ali,] 1= Ali,] + BIi, K * Clk, jl

od

check_in B[i, k], C[k, 1:NJ;
od
check_in A[i, 1:NJ;

od

The first check-out executes N/P times on each processor and checks-out N/b cache blocks,
where b is the number of double precision floating point values that fit in a cache block, for a
total of N?/(bP) cache blocks. The latter two check-outs execute N?/P times and check-out 1/b
and N/b blocks, respectively. The P processors check out a total of (N® + 2N?)/b blocks. The
annotations identify the data access patterns that effectively use the cache. Each element of A
and B is reused N times, while an element of C is accessed only once each time it is brought
into the cache, which contributes the O(N?) term.
In the worst case, in which the cache cannot hold a matrix row, the annotations look like:

for ¢ := L, to U, do
for £ := 1to N do
check_out_S BIi, k];
for j :=1to N do
check_out X A[i, jJ;
check_out_S C[k, j;
Al) = Ali,] + B[, K * C[k,)

check_in Al[i, j], C[k, 1:NJ;
od
check_in Bi, k]
od
od

The annotation for B executes N?/P times, checking out 1/b blocks each time. The annotations
for A and C execute N?/P times, checking out 1/b blocks each time. The total number of
checked-out blocks is (2N3 + N?2)/b.

Blocking (also called tiling) is a well-known technique for reducing communication in this
algorithm [25]. It breaks the problem into multiplications of smaller submatrices. Because the
submatrices fit in the cache, array elements are repeatedly accessed locally rather than remotely
fetched. Assume that the block factor 7 is chosen so a submatrix of size ' x T and two rows of
length T fit in the cache, the annotated blocked algorithm looks like:

for kk := 1 to N step T do
for j7:=1to N step T do
e i=kk+T -1, U; :==jj+T - 1;
check_out_S C[kk : Uy, jj : Uj];
for i :== L, to U, do
check_out X Afi, 57 : Ujl;
check_out_S B[i, kk : Uy];
for k := kk to U, do
for j := jj to U; do
Ali, i) = Al) + Bl K] * Clk, jl:

od
od
check_in Afi, jj : U;]; B[i, kk : Ug];
od
check_in C[kk : Uy, jj : Uj];
od

od

The three submatrices are checked-out before they are used and are checked-in immediately
after. On each processor, the first check-out executes N?/T? times and the other two check-outs
execute N3/(PT?) times. The first check-out accesses T2 /b blocks and the other two check-out’s
access T'/b blocks. The program accesses a total of (2N?/T + PN?)/b blocks. Blocking speeds
matrix multiplication on real computers [25] by reducing the number of cache blocks accessed
by a factor of 2/T', in the limit.

3.1.1 Experimental Results

This section contains preliminary results from some experiments run to test the CICO model.
We used CICO to analyze matrix multiplication and modified the code as described above. We
then ran the original and modified programs on a detailed simulation of a 32 processor machine
running the original Dir; SW protocol [22]. The simulation ran on the Wisconsin Wind Tunnel,
which is a detailed and accurate parallel architecture simulator that runs on a Thinking Machines
CM-5 computer [35]. In both cases, the predicted performance improvements were observed and
the predicted number of shared cache misses was close to the actual number of shared misses.

10

Cache Misses (millions)
CICO Predicted | Actual
Unblocked 33.7 31.9
Blocked 4.3 2.7

Table 2: Predicted and actual caches misses for unblocked and blocked multiplication of 512 x 512 matrices.

The numbers do not include 0.7 million cache misses in the initialization code.

The first program multiplies two 512 X 512 matrices containing double-precision floating-
point value. In the original, unblocked code, each processor computed the product for N/P
rows of the result matrix. To compute a row, a processor reads a complete matrix (more than 2
megabytes). In the modified, blocked code, each processor computes a 16 x 16 submatrix of the
product. We simulated processors with 256K, 4-way set associative caches. Blocking decreased
execution time from 784 million to 428 million cycles, a speedup of 1.8. Total cache misses (not
including 0.7 million in initialization) fell from 31.9 million to 2.7 million, a 92% improvement.

Table 2 compares the cache misses predicted by CICO against the actual cache misses. In
the blocked program, CICO underpredicts cache misses. We believe the discrepancy is due to
unmodeled cache reuse of the blocks in the large cache. In the unblocked code, CICO’s prediction
is very close to the measured value and clearly demonstrate the importance of blocking this
algorithm.

3.2 Water

Water is one of the Stanford Splash shared-memory benchmarks [37]. It is an N-body molecular
dynamics code that calculates the forces and potentials among a collection of water molecules.
Its principal data structure is a vector of N water molecules. Each of the P processors is
statically assigned to compute forces and potentials for N/P contiguous molecules. Because
inter-molecular forces are symmetric, each processor only computes the interaction between a
molecule and N/2 other molecules. Process p’s main loop is:

for s := 1 to time_steps do
for m := L, to L, + N/P do
fori:=m+1to(m+1+ N/2) (mod N)do
lock molecules m and ¢;
compute forces on molecules m and ¢ and update them;
unlock molecules m and ¢;
od
od
compute position of molecules L,...Lp + N/P
od

where L, is the first molecule in the vector assigned to processor p.

To annotate these loops, we must make assumptions about the processors’ caches. Again,
the easy and uninteresting case is that all molecules fit in a cache. This assumption is unrealistic
since the data for a molecule requires 672 bytes of storage (although only 168 bytes of it are
accessed in the parallel loop discussed below). For now, assume that N/2 molecules cannot fit in
the cache, but N/P molecules fit. Later, we will relax the second assumption to accommodate

11

larger N. The two assumptions imply that the parallel inner loop of water, as written, has little
or no cache reuse of the molecules indexed by loop :

for s := 1 to time_steps do
for m := L, to L, + N/P do
check_out_X molecule m;
fori:=m+1to(m+1+ N/2) (mod N)do
lock molecules m and ¢;
check_out X molecule 7;
if i mod (N/P) = m then check_out X molecule m; fi
compute forces on molecules m and ¢ and update them;
check_in molecule 7;
unlock molecules m and ¢;
od
check_in molecule m;
od
compute position of molecules L,...Lp + N/P
od

The first check-out references N/P molecules per processor per time step. Each processor exe-
cutes the second check-out N/P times per time step, so the N/2 molecules indexed by loop i are
checked-out a total of N?/(2P) times. The conditional check-out in loop ¢ is necessary because
another processor accesses molecule m every N/ P iterations of loop ¢ (assuming all processors
execute at roughly the same rate). Although the locks prevent data races, when another proces-
sor accesses molecule m, it leaves the first processor’s cache and must be reobtained when the
first processor acquires the lock. This communication occurs P/2 times per inner loop invocation
or a total of N/2 times per time step, which does not significantly affect the communication
cost.

Interchanging the two loops leads to a program that performs the same work in a more
communication-efficient manner:

check_out X molecules L, ...L, + N/P;
for s := 1 to time_steps do
fori:=L,to (L, + N/2+ N/P) (mod N)do
check_out X molecule 7;
for m := L, to L, + N/P do
if (i1 —m (mod N)) < N/2 then
if ¢ mod (N/P) = m then check_out_X molecule m; fi
lock molecules m and ¢;
compute forces on molecules m and ¢ and update them;
unlock molecules m and ¢;

fi
od
check_in molecule ;
od

compute position of molecules L,...Lp + N/P

do

Each processor now check-outs molecule ¢ N/2 + N/P times per time step, so the total num-
ber of cache misses is O(N) rather than the previous O(N?/P). The conflicting accesses to

12

molecules introduce N/2 — N/P additional check-outs, which again do not significantly affect
the communication cost.

Restructuring water reduces its communication cost without changing its time complexity.
Moreover, a simple variant of the restructured program works even when N is large enough that
N/P molecules do not fit in the cache. In that case, blocking loop ¢ by a factor of T' ensures
N/(PT) molecules fit in the cache.

3.2.1 Experimental Results

We modified this Splash benchmark in the manner described in Section 3.2, by interchanging
the loops that iterated over the molecules, so as to increase cache reuse of the molecules. Im-
provements in running time were not as dramatic since the computation on a pair of molecules
is far more costly than the communication to obtain the molecules. The program computed the
interactions among 256 molecules through 10 time steps. Each simulated processor had a 32K,
4-way set associative cache (a 256K cache could hold all molecules). The unmodified program
ran in 718 million cycles and the modified program took 690 million cycles (a 4% improvement).
Cache misses, however, decreased from 2.4 million to 0.6 million (a 76% improvement). The
CICO model in Section 3.2 predicted that cache misses should decrease from 2.2 million to 0.5
million, which are very close to the observed values.

The dramatic reduction in cache misses in these experiments is important in light of the
current trend in which processor cycle times are decreasing much faster than network latencies.
These experiments assumed a modest 100 cycle delay to obtain a remote cache block. Longer
latencies in future machines will reduce performance even more unless cache misses can be
reduced.

3.3 Mp3d

Mp3d is another Stanford Splash shared-memory benchmarks [37]. It performs a Monte Carlo
simulation of a rarefied fluid flow. The simulation traces molecules through a three-dimensional
space array of unit-sized cells and uses the accumulated information in each cell to compute the
fluid flow. The original mp3d code statically partitioned molecules among processors, so each
processor moves its collection of molecules through the space array. This approach produced
considerable locality of reference for molecules (except after a collision, as in water), but little
locality for the space array. Our changes concentrated on the latter data structure.

The code was restructured in two ways to exploit insights provided by the CICO model. The
first modification updated a space cell’s accumulated information when a molecule moves into
the cell rather than waiting until the molecule leaves the cell in the following time step. The
original code reduced computation at the expense of communication since it avoided multiple
updates to a cell when a molecule was knocked from the cell before the end of a time step. The
code operated as follows:

1] if molecule moves then update starting cell with velocity;
2] compute new position of molecule;
3] if collision then update molecule’s position and velocity;

This organization requires a processor to check-out a space cell twice. The first check-out
occurs in statement 2 or 3, when recording the molecule’s presence in its new cell and checking
for a collision. In the next time step, the processor updates the space cell’s aggregate statistics

13

Version Execution Time | Cache Misses Cache Miss Time

(millions of cycles) (millions) | (millions of cycles)
Original 813.6 6.3 324.1
R1 653.8 5.5 254.4
R2 537.3 5.5 188.8

Table 3: Execution time and cache misses for the original mp3d and two modified versions. Version R1 updated
a space cell while it was in a processor’s cache instead of waiting until the following time step. Version R2 reduced

the contention at space cell updates by locking them during a first pass over the data structure.

as the molecule leaves the cell in statement 1. The cache block for a space cell is unlikely to
remain in a processors’ cache between these accesses. A simple change is to perform the update
from statement 1 after statement 3, while the space cell is still in the cache. This change requires
minor corrections later in the computation to undo the update if the molecule is knocked from
the space cell by a collision.

1] compute new position of molecule;

2] if collision then update molecule’s position and velocity and
undo accumulated statistics;

3] update starting cell with velocity;

The second change reduced the number of access conflicts when updating molecules’ positions
(in space cells). Originally, each processor iterated over its set of molecules, updating their
position and the position of the molecules with which they collided. If several molecules reside
in a cell, the cell data structure ping-ponged back and forth as the processors simultaneously
checked it out exclusive. In the modified code, each space cell has an advisory lock. Space cells
are updated in two steps. In the first step, no conflicts occur because each processor updates only
the cells for which it obtained a lock. In the second step, each processor updates its remaining
cells, regardless of the status of the lock. (We tried several iterations of the first steps, but the
cost of the additional iterations exceeded the minor benefit of avoid a small number of conflicts.)

3.3.1 Experimental Results

Mp3d was modified as described above and run on WWT. Table 3 shows the effects of the
modifications. The first change described above (updating the space cell immediately) reduced
the number of cache misses by 13% and improved execution time by 20%. The second change
barely affected the number of cache misses, but reduced the cost of processing these misses by
26% (remember that the cost of a cache miss depends on the state of the referenced block and
is higher when a block is in use by other processors). These results are encouraging. Mp3d is
a Monte Carlo code whose behavior is difficult to analyze precisely. Nevertheless, the insights
provided for CICO were able to greatly improve its performance with minor modifications to
the program.

4 CICO and Hardware

CICO annotations are not only useful for reasoning about cache behavior. They can be passed
as directives to a memory system to improve program performance. For example, Dir; SW [22]

14

is a minimal directory protocol that adds little complexity to the hardware of a message-passing
machine, but efficiently supports programs written within the CICO model [40]. It uses a
single pointer/counter field to either identify the processor holding a writable copy of a cache
block or to count the number of outstanding readable copies. Simple hardware entirely handles
programs conforming to the CICO model by updating the pointer/counter and forwarding data
to a requesting processor. Programs not conforming to the model run correctly, but cause traps
to software trap handlers that perform more complex operations, similar to MIT Alewife [2].

Diry SW performs better if programs flush unneeded blocks from caches with check-ins. If
these blocks remain in a processor’s cache, subsequent memory references would cause the pro-
tocol to trap to software to handle the exchange of messages necessary to invalidate copies of
a block. By properly employing these annotations, a programmer can reduce the frequency at
which blocks must be invalidated, which permits Diry SW to implement the invalidation mech-
anism in software rather than hardware. This, in turn, greatly simplifies Dir; SW hardware. In
addition, the check_out X directive permits a program to reduce message traffic in the common
case that it reads a location before modifying it. Ordinarily, the first read of a location would
bring its block into the cache in a read-only state, which would must changed to exclusive at
the first write. The check_out X annotation brings the block into the cache in state exclusive,
which avoids the need for an upgrade message.

5 Related Work

The work of Larry Snyder and students clearly identifies the need for a shared-memory per-
formance model. Lin and Snyder reported an experiment in which programs written for a
non-shared-memory (message-passing) machine ran faster on a shared-memory computer than
shared-memory programs [30]. Ngo and Snyder reported similar results for more complex pro-
grams running on a wide variety of shared-memory computers [32]. The primary difference
between the shared-memory and non-shared-memory programs was that the latter programs
partitioned shared data so each processor used its cache more effectively and communicated
with other processors less frequently than in the shared-memory programs. The approach in
these papers—simulating message-passing on shared-memory computers—forfeits some advan-
tages of shared-memory machines. The CICO model identifies a program’s communication and
encourages a programmer to reformulate the program in a similar manner, but still retains the
underlying shared-memory paradigm.

LeBlanc and Markatos identified another advantage of shared memory in their comparison of
shared-memory and message-passing programs [26]. They showed that programs with load im-
balances are better formulated as shared-memory rather than message-passing programs because
tasks and data are more easily moved dynamically in a shared address space. Their programs
were written under a naive shared-memory model that was unconcerned with locality. Conse-
quently, balanced programs, which could be partitioned statically, were better formulated as
message-passing programs that performed less communication. CICO draws from the strengths
of both paradigms. It, like message passing, focuses on optimizing communication and data
reuse, but still retains the flexibility and load-balancing of shared memory.

Cheriton et al. describe the changes they made to MP3D [37], a three-dimensional particle
simulator to improve its cache performance [9]. The changes eliminated false sharing by changing
the data structures to increase their “processor affinity” and hence reduce communication. The
changes increased execution speed by a factor of 3—4 on small-scale multiprocessors. Underlying
the changes was an intuitive understanding of cache protocols, but no formal model like CICO

15

that would enable them to compare alternatives strategies. Instead, they spent six person-
months running experiments to understand this 1,500 line program.

Alpern et al. describe a performance model, called the uniform memory hierarchy (UMH),
for hierarchical uniprocessor memories [4]. This model is an abstract, but detailed description of
a computer’s memory hierarchy, starting at registers and continuing through virtual memory’s
paging storage. Unlike CICO, UMH models all levels in a uniprocessor’s memory hierarchy and
is concerned with the bandwidth between each level. Alpern et al. briefly describe an extension of
UMH to shared memory. However, from the description, it is unclear whether UMH adequately
describes cache-coherent shared memory and whether the details of the lower levels are necessary
to reason about shared-memory references.

Hill and Larus describe a sequence of simple, qualitative models for cache-coherent, shared-
bus computers (Multis) [21]. The sequence of models forms an increasingly precise description of
the cache-coherence protocols used in Multis. The models enable a programmer to predict how
the hardware performs for different patterns of memory references. The paper also presented a
few rules of thumb (e.g, avoid false sharing) and explained their rationale in terms of the model.

Hill et al. described a preliminary version of CICO and showed that simple directory hardware
could use the annotations to improve program performance [22, 40]. The earlier version of CICO
was described in terms of Dir; SW hardware, did not provide a cost model, and was used to reduce
Diry SW traps rather than improve program performance.

Snyder argued that an abstract model of a class of computers, which he called a type architec-
ture (and we call a programming model), should be fundamental bridge between programming
languages and programmers and computers [39]. His principal requirement for a type architec-
ture is that it should accurately reflect the cost of operations on real machines. In Snyder’s
terms, the combination of shared memory and CICO can be considered a type architecture
for cache-coherent shared-memory computers. The extent to which CICO accurately captures
shared-memory costs needs to be more fully explored, but the examples in Section 3 show that
CICO is useful even with simple assumptions.

Many theoretical models of shared-memory computers exist. One of the most well-known is
parallel random access machine (PRAM) model [17]. A PRAM has a single globally-addressable
memory and n processors that operate in lock-step read, compute, write cycles. Although PRAM
models handle simultaneous reads or writes differently [16, 38], they all assume that memory
accesses are unit cost and that synchronization is unnecessary (because processors run in lock-
step). These assumptions simplify analysis, but do not reflect real computers, particularly those
with caches. For this reason, PRAM extensions model non-uniform memory and processor
asynchrony [3, 10, 33, 20]. The new models are more descriptive and complex than traditional
PRAM models, but still do not accurately describe cache-coherent parallel computers. Perhaps
this paper will help inspire PRAM extensions that describe this important type of computers.

Culler et al. described another model of parallel computation, called LogP, that is closer to
actual parallel computers [12]. Like CICO, LogP is an abstraction of real machines intended to
provide programmers with insight into potential bottlenecks without falling into excessive detail.
The LogP model is based on four parameters that describe the cost of communication in a parallel
computer. LogP, however, differs from CICO in several ways. It assume that communications
is explicit (though, not necessarily message passing) and provides tools for reasoning about the
effect of this communication on an algorithm’s running time. LogP also does not model machines
with caches since it assumes that communication operations are identified. It might be possible
to use LogP to model the costs of cache misses identified by CICO, instead of using the simplier
models in Section 2.3. The principle difficulty is the one mentioned above: CICO aggregates
communications that occurs over a period of time into a single annotation. One of LogP’s

16

parameters is the time between consecutive messages, which is lost in the CICO annotation.

6 Conclusion

This paper describes the CICO programming performance model and shows how it can be em-
ployed to reason about and improve the performance of shared-memory programs running on
cache-coherent parallel computers. The CICO model begins with annotations that a program-
mer adds a program to identify the points at which shared-memory communication occurs. A
simple cost model calculates the cost of communication at these annotations and, therefore, the
cost of the memory references described by the annotations. The CICO model abstracts from
actual cache-coherent computers, which allows the model to be used to reason about interpro-
cessor communication on many machines. In three experiments, the model accurately identified
program modifications that greatly reduced the number of cache misses.

We are currently exploring a number of extensions to the model. One desirable addition
would be synchronization. Synchronization, like shared-memory references, requires interpro-
cessor communication, which should be measured by a communication model. On the other
hand, synchronization is time dependent and requires an interprocessor rendezvous, which is
difficult to model in this framework. Another extension could capture more than two levels of
memory hierarchy, for example two levels of caches or virtual memory. We also plan to ex-
plore more accurate cost models for particular processors, to see when the increased accuracy is
beneficial.

Acknowledgements

Mark D. Hill provided encouragement and many helpful comments on this paper. Tom Reps and
Elizabeth Shriver provided many helpful comments on this paper. Singh et al. [37] performed an
invaluable service by writing and distributing the SPLASH benchmarks. Michael Wolf provided
the mm benchmark. Shubhendu S. Mukherjee restructured mp3d as described above.

References

[1] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A Processor Architecture
for Multiprocessing. In Proceedings of the 17th Annual International Symposium on Computer Architecture,
pages 104-114, June 1990.

[2] Anant Agarwal, Richard Simoni, Mark Horowitz, and John Hennessy. An Evaluation of Directory Schemes
for Cache Coherence. In Proceedings of the 15th Annual International Symposium on Computer Architecture,
pages 280-289, 1988.

[3] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. On Communication Latency in PRAM Computations.
In Proceedings of the First ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 11-21,
June 1989.

[4] Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker. The Uniform Memory Hierarchy Model of
Computation. Submitted for publication, 1992.

[5] J. Archibald and J.-L. Baer. Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation
Model. ACM Transactions on Computer Systems, 4(4):273-298, 1986.

[6] C. Gordon Bell. Multis: A New Class of Multiprocessor Computers. Science, 228:462-466, 1985.

[7] Mark Bromley, Steven Heller, Tim McNerney, and Guy L. Steele Jr. Fortran at Ten Gigaflops: The Con-
nection Machine Convolution Compiler. In Proceedings of the SIGPLAN 91 Conference on Programming
Language Design and Implementation, pages 145-156, June 1991.

17

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[15]
[19]
[20]
[21]

[22]

(23]
(24]

(23]

[26]

(27]

J. Cheong and A.V. Veidenbaum. A Cache Coherence Scheme With Fast Selective Invalidation. In Proceedings
of the 15th Annual International Symposium on Computer Architecture, pages 299-307, June 1988.

David R. Cheriton, Hendrik A. Goosen, and Philip Machanick. Restructuring a Parallel Simulation to Im-
prove Cache Behavior in a Shared-Memory Multiprocessor: A First Experience. In International Symposium
on Shared Memory Multiprocessing, pages 109-118, April 1991.

Richard Cole and Ofer Zajicek. The APRAM: Incorporating Asynchrony into the PRAM Model. In Proceed-
ings of the First ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 169-178, June
1989.

R.C. Covington, S. Madala, V. Mehta, J.R. Jump, and J.B. Sinclair. The Rice Parallel Processing Testbed.
In Proceedings of the 1988 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, pages 4-11, May 1988.

David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice Santos, Rahesh
Subramonian, and Thorsten von Eicken. LogP: Toward a Realistic Model of Parallel Computation. In Fifth
ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP), pages 1-12, May
1993.

Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe. Automatic Management of Programmable Caches. In
Proceedings of the 1988 International Conference on Parallel Processing (Vol. II Software), pages 229-238,
Aug 188.

Helen Davis, Stephen R. Goldschmidt, and John Hennessy. Multiprocessor Simulation and Tracing Using
Tango. In Proceedings of the 1991 International Conference on Parallel Processing (Vol. II Software), pages
1199-107, August 1991.

Susan J. Eggers and Randy H. Katz. A Characterization of Sharing in Parallel Programs and its Application
to Coherency Protocol Evaluation. In Proceedings of the 15th Annual International Symposium on Computer
Avrchitecture, pages 373-382, 1988.

Faith E. Fich and Prabhakar L. Ragde. Relations Between Concurrent-Write Models of Parallel Computation.
In Proceedings of Principals of Distributed Computing, pages 179-190, August 1984.

Stephen Fortune and James Wyllie. Parallelism in Random Access Machines. In Proceedings of the Tenth
ACM Symposium on Theory of Computing, pages 114-118, 1978.

Hans Michael Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessor Systems. PhD thesis,
Rheinischen Friedrich-Wilhelms-Universitat, 1989.

Hans Michael Gerndt and Hans Peter Zima. Optimizing Communications in SUPERB. Technical Report
ACPC/TR 90-3, ACPC - Austrian Center for Parallel Computation, University of Vienna, 1990.

Phillip B. Gibbons. A More Practical PRAM Model. In Proceedings of the First ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 158-168, June 1989.

Mark D. Hill and James R. Larus. Cache Considerations for Programmers of Multiprocessors. Communica-
tions of the ACM, 33(8):97-102, August 1990.

Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A. Wood. Cooperative Shared Memory:
Software and Hardware for Scalable Multiprocessors. In Proceedings of the Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS V), pages 262-273,
October 1992.

Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU Caches. IFEE Transactions on Com-
puters, C-38(12):1612-1630, December 1989.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD Distributed-
Memory Machines. Communications of the ACM, 35(8):66-80, August 1992.

Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The Cache Performance and Optimizations
of Blocked Algorithms. In Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IV), pages 63-74, April 1991.

Thomas J. LeBlanc and Evangelos P. Markatos. Shared Memory Vs. Message Passing in Shared-Memory
Multiprocessors. In Fourth IEEE Symposium on Parallel and Distributed Processing, page 7, Dallas, TX,
December 1992.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta, John Hennessy,
Mark Horowitz, and Monica Lam. The Stanford DASH Multiprocessor. IEEE Computer, 25(3):63-79, March
1992.

18

28]

[29]

[30]

[31]
[32]
[33]
[34]

[35]

[41]

Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens, Anoop Gupta, and John Hen-
nessy. The DASH Prototype: Logic Overhead and Performance. IEEE Transactions on Parallel and Dis-
tributed Systems, 4(1):41-61, January 1993.

Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM Transactions on
Computer Systems, 7(4):321-359, November 1989.

Calvin Lin and Lawrence Snyder. A Comparison of Programming Models for Shared Memory Multiprocessors.

In Proceedings of the 1990 International Conference on Parallel Processing (Vol. 1l Software), pages 11-163—
170, August 1990.

Sang Lyul Min and Jean-Loup Baer. A Timestamp-based Cache Coherence Scheme. In Proceedings of the
1989 International Conference on Parallel Processing (Vol. I Architecture), pages 1-23-32, August 1989.

Ton A. Ngo and Lawrence Snyder. On the Influence of Programming Models on Shared Memory Computer
Performance. In Scalable High Performance Computing Conference (SHPCC ’92), page 7, April 1992.

Naomi Nishimura. Asynchronous Shared Memory Parallel Computation. In Proceedings of the Second ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 76-84, June 1990.

Keshav Pingali and Anne Rogers. Compiling for Locality. In Proceedings of the 1990 International Conference
on Parallel Processing (Vol. II Software), pages 11-142-146, August 1990.

Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C. Lewis, and David A. Wood.
The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel Computers. In Proceedings of the 1993 ACM
Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages 48—60, May 1993.

Randall Rettberg and Robert Thomas. Contention is no Obstacle to Shared-Memory Multiprocessing. Com-
munications of the ACM, 29(12):1202-1212, December 1986.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel Applications for
Shared Memory. Computer Architecture News, 20(1):5-44, March 1992.

Marc Snir. On Parallel Search. In Proceedings of Principals of Distributed Computing, pages 242-253, August
1982.

Lawrence Snyder. Type Architectures, Shared Memory, and the Corollary of Modest Potential. Annual
Review of Computer Science, pages 289-317, 1986.

David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C.
Lewis, Shubhendu S. Mukherjee, Subbarao Palacharla, and Steven K. Reinhardt. Mechanisms for Cooperative
Shared Memory. In Proceedings of the 20th Annual International Symposium on Computer Architecture, pages
156-168, May 1993.

Hans Zima and Barbara Chapman. Compiling for Distributed-Memory Systems. Proceedings of the IEEE,
81(2):264-287, February 1993.

19

