Optimistic Simulation of Parallel Architectures Using
Program Executables *

Sashikanth Chandrasekaran and Mark. D. Hill

Computer Sciences Department

University of Wisconsin—-Madison
1210 West Dayton Street
Madison, WI 53706 USA

wwt@Qcs.wisc.edu

Abstract

A key tool of computer architects is computer simu-
lation at the level of detail that can execute program ex-
ecutables. The time and memory requirements of such
simulations can be enormous, especially when the ma-
chine under design—the target—is a parallel machine.
Thus, it is attractive to use parallel simulation, as suc-
cessfully demonstrated by the Wisconsin Wind Tunnel
(WWT). WWT uses a conservative simulation algo-
rithm and eschews network simulation to make looka-
head adequate. Nevertheless, we find most of WWT’s
slowdown to be due to the synchronization overhead in
the conservative simulation algorithm.

This paper examines the use of optimistic algo-
rithms to perform parallel simulations of parallel ma-
chines. We first show that we can make optimistic
algorithms work correctly even with WW1T’s direct ex-
ecution of program executables. We checkpoint pro-
cessor registers (integer, floating-point, and condition
codes) and use executable editing to log the value of
memory words just before they are overwritten by
stores. Second, we consider the performance of two
optimistic algorithms. The first executes programs op-
timistically, but performs protocol events (e.g., sending
messages) conservatively. The second erecutes every-
thing optimistically and is similar to Time Warp with
lazy message cancellation. Unfortunately, both ap-
proaches make parallel simulation performance worse
for the default WWT assumptions. We conclude by
speculating on the performance of optimistic simula-
tion when simulating (1) target network details, and

*This work is supported in part by NSF Grant MIP-9225097,
Wright Laboratory Avionics Directorate, Air Force Material
Command, USAF, under grant #F33615-94-1-1525 and ARPA
order no. B550, Sun Microsystems and Thinking Machines Cor-
poration, Our Thinking Machines CM-5 was purchased through
NSF Institutional Infrastructure Grant No. CDA-9024618 with
matching funding from the University of Wisconsin Graduate
School. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the Wright Laboratory
Avionics Directorate or the U.S. Government.

(2) on hosts with high message latencies and no syn-
chronization hardware.

1 Introduction

Simulation is a popular technique to study and eval-
uate proposed computer architectures. To simulate
the complex interactions in the proposed design, re-
searchers must be able to run applications (i.e., pro-
gram executables) in addition to stochastic workloads.
Unfortunately, the time and memory requirements of
such simulations can be enormous, especially when the
machine under design is a parallel machine. Therefore,
researchers have begun using parallel simulation—i.e,
using an existing parallel machine (the host) to simu-
late the parallel machine under study (the target). A
technique known as direct ezecution [3] is used to exe-
cute program executables. With direct execution, the
host simulates only those features in the target ma-
chine that it does not support (e.g., cache-coherence,
synchronization operations). In this paper we use the
term event only to refer to those actions that require
simulation by the host. The common features, such
as program instructions, are not simulated—instead,
they are directly executed by the host. The Wiscon-
sin Wind Tunnel (WWT) is a simulator that executes
program executables on a Thinking Machines CM-5
host to simulate cache-coherent shared-memory com-
puters [14]. WWT directly executes all instructions
and memory references that hit in the target cache.
Program executables are edited so that during WW'T’s
direct execution they also keep track of target execu-
tion time (by incrementing a counter). WWT regains
control on cache misses and simulates the target cache,
directory, etc., by sending timestamped messages.

WWT uses the conservative time bucket synchro-
nization mechanism [18] to coordinate simulation of
the processor nodes. Simulation proceeds in parallel
for quanta of duration Q). Each node must synchro-
nize with all other nodes at the end of every quantum,
after which all nodes proceed in parallel for another
quantum Q. Without target network simulation, the
minimum target time between events and the events
that they can generate in remote nodes (also called
the lookahead) is the target network latency. In or-
der to have sufficient lookahead, WW'T avoids network
simulation and sets the quantum length to the fixed
target network latency. Nevertheless, we find most

Step Time % of

total time
Direct Execution 131 3.99%
Protocol Simulation 740 22.55%
Quantum Synchronization 2338 71.26%
Barrier Synchronization 72 2.20%

Table 1: Breakdown of total simulation time with conser-
vative simulation.

The table shows the breakdown of simulation time when simu-
lating the program Ocean, on a target machine to be described
in Section 2. Time is in millions of host cycles. Direct Exe-
cution refers to the time spent executing target instructions on
the host node. Protocol simulation includes simulation of the
target cache and target directory events. While quantum syn-
chronization refers to the time spent by host nodes waiting for
other nodes to reach the end of the quantum and for the mes-
sages to reach their destinations, barrier synchronization is the
time taken for nodes to complete the barrier after the network
has delivered all messages and the last node has entered the
barrier. The target program was executed for 16 million target
cycles.

of WWT’s slowdown to be due to the synchronization
over}iead in the conservative simulation algorithm (Ta-
ble 1).

In this paper, we examine the use of optimistic
parallel simulation algorithms to simulate parallel ma-
chines using program executables. To the best of our
knowledge, this is the first work to demonstrate how
optimistic techniques can be used with directly exe-
cuted programs. To correctly save the state of a target
program, we checkpoint the processor state by copying
the registers (integer and floating-point) and condition
codes at the end of each quantum. Restoring the pro-
cessor state only involves storing the values back into
their respective registers. We incrementally save the
target program’s memory by editing the program ex-
ecutable to include instructions that log the value of
memory words before every store instruction. To re-
store the memory state, we invoke a routine in the
target program that replaces the old values in mem-
ory. Using these techniques, we study two optimistic
approaches:

e A hybrid approach that optimistically executes
target program instructions and memory refer-
ences that hit in the target cache and con-
servatively simulates protocol events. We use
Reynolds’ terminology [15] and call this a risk-
free optimistic approach.

e An aggressive Time Warp-like optimistic ap-
proach that executes all target program instruc-
tions, memory references (including those that
miss in the target cache) and protocol events op-
timistically.

Optimistic approaches have been shown to perform
better when simulating target systems such as queuing
networks and when using stochastic workloads [12].

This paper, on the other hand, compares the perfor-
mance of conservative and optimistic approaches by
executing shared-memory applications. We find that
for all the applications that we executed on a CM-5
host, the conservative technique performs better than
either optimistic technique. The risk-free technique
runs an average of 1.5 times slower than the conser-
vative simulation. This technique improves the looka-
head only by an average of 36 target machine cycles
since shared-memory parallel programs spend signifi-
cant time in communication and synchronization. The
aggressive technique reduces the frequency of synchro-
nization among the host nodes by up to 66%. How-
ever, rollback overheads dominate the execution and
it is up to 2.5 times slower than the the conservative
simulation.

We then speculate on simulation performance in
two cases that could be more favorable to optimistic
simulation: (1) Accurate simulation of the target net-
work, which forces the lookahead to be much less than
the constant network latency. At low lookaheads, syn-
chronization overheads are exacerbated and optimistic
techniques may yield better performance. (2) Simu-
lation on hosts with high network latencies and no
hardware support for synchronization. We speculate
that the optimistic approaches would perform better
on hosts where synchronization operations must be
performed in software (at a higher cost).

The next section provides a brief background on our
workloads. Sections 3 and 4 present the performance
of the risk-free optimistic technique and the aggressive
optimistic technique respectively. Section 5 presents
the scenarios where optimistic techniques may offer
better performance. Section 6 describes related work,
Section 7 describes future work, and finally, Section 8
presents our conclusions.

2 Target Machines and Workloads

Our target machines are composed of nodes which
contain a CPU, a 256KB 4-way set-associative data
cache, and local memory. The nodes are connected
by a network that has a fixed latency of Q (=100) cy-
cles. An all-hardware directory-based coherence pro-
tocol is used to maintain a sequentially consistent view
of shared-memory.

The three applications that we chose to present are
Ocean, Sparse, and Water. Ocean and Water are from
the SPLASH benchmark suite [17], and Sparse is a lo-
cally written shared-memory program. Ocean is a hy-
drodynamic simulation that models a two-dimensional
cross-section of a cuboidal basin. The input data set
used was a 98 x 98 grid. Sparse solves AX = B in
parallel for a sparse matrix A. The input matrix was
a 256 x 256 dense matrix. Water is a water molecule
simulation performed on 256 molecules for 10 itera-
tions. We chose these benchmarks because they ex-
hibit different computation/communication ratios and
communication patterns. While Ocean has a very high
communication overhead, Sparse has a moderate com-
munication overhead and Water spends very little time
in communication.

Time

Host
Nodes: o 1 2 3

@ Direct Execution (Optimistic)
E Waiting (Quantum Synchronization)
I:l Barrier Synchronization

m Reduction

Quantum H

Running
Time

Figure 1: A pictorial view of the different steps in a
quantum when using a risk-free optimistic technique.

3 A “Risk-Free”
nism

In this section, we present the implementation and
performance of a hybrid approach that adds optimism
to the existing conservative mechanism. This strat-
egy is similar to the Breathing Time Buckets strat-
egy supported in SPEEDES [18]. Like the conserva-
tive technique, events are processed in quanta. How-
ever, these quanta do not have the constant length,
Q. Instead, the event horizon determines the quantum
length. The event horizon is the minimum event time
of all events generated during optimistic simulation of
the previous quantum plus the target network latency.
We refer to the logical time of the event horizon as the
safe time. The safe time is computed by performing
a synchronous min reduction of the event times. Pro-
cessing events beyond the safe time may cause time
accidents, i.e., events processed beyond the safe time
may have to be rolled back. Thus a quantum length is
‘Ehe lo)gical time between two successive event horizons

> Q).

The conservative technique (combining direct exe-
cution and simulation of events) is used to process safe
events—events with timestamp less than the safe time.
When a host node has no events that it can safely pro-
cess, it checkpoints the target processor state and opti-
mistically executes target program instructions. How-
ever, to confine rollbacks to the local processor, cache
misses and other events beyond the safe time that may
cause communication are not processed optimistically.
Instead, the node participates in the global synchro-
nization to check for causality errors and to compute
the next event horizon. The probability of optimisti-
cally executed instructions being incorrect tends to
increase the further simulation proceeds beyond the
safe time. To prevent such incorrect computations
from proceeding too far ahead into the logical time
and increasing the probability of a rollback, we insert
a mega-quantum expiration event that puts an upper
bound on the optimistic phase in each cycle. Schedul-
ing the mega-quantum expiration event at 3 x () cycles
gives the best performance. Figure 1 illustrates the
different steps in a quantum when using a risk-free
optimistic technique.

We now discuss the techniques needed to save and
restore the state of a directly executed program (Sec-

Optimistic Mecha-

Il Direct Execution+Protocol Simulation (Conservative)

tions 3.1 and 3.2). Directly executed programs can
manipulate any part of a target node’s state. However,
since the risk-free mechanism prevents the target pro-
gram from executing beyond an event, we only need
to save and restore the target program’s register and
memory state.

3.1 Saving Processor State

WWT schedules a checkpoint event at the end of
each quantum. Whenever the target program returns
control to WWT (due to a quantum expiration, or
an event), the executive interface to the CM-5 ker-
nel [13] saves the target global registers (including the
program counter) and the condition codes in a buffer.
We only need to copy the buffer and save the floating-
point registers and the floating-point status register to
partially checkpoint the target processor state. On a
machine with no register windows (e.g., a MIPS-like
architecture) the entire processor state could be con-
structed by making a copy of all the registers. On a
SPARC processor, we need to save the registers in all
the active register windows that were used by the tar-
get program before starting optimistic execution of the
target program. When a time accident is detected, we
copy the global integer registers, floating-point reg-
isters and the condition codes from the checkpoint
buffer into the host node’s registers. The target reg-
ister window is restored before returning to the tar-
get program for restarting direct-execution from the
checkpoint.

3.2 Saving Memory State

The simplest solution to saving memory state is
to copy the entire target address space; however this
involves very high overhead. Instead, the target mem-
ory is saved incrementally by logging all changes to
it. The target program changes the state of mem-
ory by executing store instructions. We use EEL [9],
an executable editing library, to instrument the tar-
get store instructions with a small piece of code (e.g.,
four instructions before a store-word) that loads the
old value from memory and saves it in a log in the
target address space.! Note that stores to both pri-
vate and shared memory locations are logged. When
a time accident is detected, we invoke an unroll pro-
cedure in the target program that restores the values
in the target memory starting from the end of the log.
This unroll procedure is linked to the target program
along with the instrumentation of the store instruc-
tions. An important concern in optimistic techniques
is the memory required for saving state. Our tech-
nique uses 4K bytes (a page) for logging changes to
memory and less than 300 bytes to save the processor
state. This overhead is less than 1% of the memory
required by a program that has a data set size of 1IMB
per node.

1 Actually, stores to target memory during the conservative
phase are also logged, since it is more expensive to detect the
state of the simulation and avoid logging. When a checkpoint
is taken the log pointer is reset to the start of the log.

Conservative Risk-Free Optimistic Simulation
% Simulation

Application | Procs | Computation Time Time Average Quantum

(million cycles) || (million cycles) Length (cycles) Slowdown
Ocean 8 16 7097 9276 112 1.31
Ocean 16 14 4398 6127 107 1.39
Ocean 32 12 3245 4505 104 1.39
Sparse 8 67 1775 2880 136 1.62
Sparse 16 46 2098 2902 128 1.38
Sparse 32 25 3329 4249 120 1.28
Water 8 59 6733 10918 202 1.62
Water 16 51 5100 8800 170 1.73
Water 32 41 4029 7759 145 1.92

Table 2: Performance of conservative vs. risk-free optimistic simulation.

This table shows the percentage of time spent by the applications in computation, the simulation times, the average quantum length,
and the slowdown of the optimistic technique when compared to the conservative simulation. The target network latency was set to
100 cycles. While the simulation times refer to the host cycles (in millions), the average quantum length refers to the target cycles.

3.3 Performance Evaluation

Table 2 compares the performance of the risk-free
optimistic technique and the conservative simulation
for the target system parameters described in Sec-
tion 2. The average quantum length is the average
number of target cycles simulated between barriers
and indicates how often synchronization is performed
between host nodes. The results clearly demonstrate
that the risk-free optimistic technique fails to increase
the lookahead and performs worse than the conserva-
tive simulation. Simulation of applications that have
a significant communication overhead is mostly con-
servative since protocol events are simulated conser-
vatively. The net result is that the average quantum
length is only slightly greater than the lookahead in
the conservative simulation (100 cycles). Synchroniza-
tion is performed nearly as often and the additional
overheads of saving and restoring state and computing
the event horizons result in a slightly longer execution
time. Water and Sparse have a significant compu-
tation component and accordingly, optimistic execu-
tion improves the lookahead. However, an increase in
lookahead alone is not sufficient to speedup the exe-
cution. In particular, optimistic execution results in
a higher load imbalance between the host nodes. For
example, a node could be executing target instruc-
tions until the mega-quantum while all other nodes
are waiting at the barrier. The increased lookahead
(or parallelism) must outweigh the load imbalance and
overheads to achieve speedups.

Table 3 presents the breakdown of the simulation
time for Ocean. The results show that the overhead of
restoring target state and computing the global event
horizon is minimal (about 3% for Ocean and less than
10% for all the applications that we simulated). Sav-
ing target registers requires less than fifty instructions
and accounts for about 2% of the simulation time. The
overhead of saving target memory is harder to segre-
gate since the target memory is incrementally saved as
the program is directly executed. Although the time
for direct execution has increased by 75 million cycles

Step Time % of

total time
Conservative Execution 123 3.26%
Protocol Simulation 808 21.44%
Optimistic Execution 83 2.20%
Quantum Synchronization | 2581 68.49%
Barrier Synchronization 64 1.72%
Reduction 92 2.44%
Undo 17 0.45%

Table 3: Breakdown of total simulation time with risk-free
optimistic simulation.

The table shows the breakdown of simulation time when simu-
lating Ocean. T4%me is in millions of host cycles. Conservative
Execution refers to the direct execution of the target program
instructions until the checkpoint. Optimistic execution refers
to the direct execution of target program instructions beyond
the checkpoint. Protocol simulation includes simulation of the
target cache and target directory events. Quantum Synchro-
nization refers to the time spent waiting for nodes to arrive at
the barrier and for the the network to deliver all the messages at
the end of each quantum. Barrier Synchronization is the time
taken for nodes to complete the barrier after all messages have
been delivered and the last node has entered the barrier. Re-
duction is the time spent in calculating the new event horizon
and Undo refers to the time spent unrolling the target registers
and memory. The target program was executed for 16 million
target cycles.

(from 131 to 206 million cycles), it still accounts for
less than 6% of the total simulation time.

4 A Time-Warp-like Optimistic Tech-
nique
In this section we present an aggressive technique
that executes both target program instructions and
protocol events optimistically. We call it Time-Warp-
like since a few target synchronization operations such
as swap are simulated conservatively.

4.1 Rolling Back Protocol State
Processing protocol events optimistically poses new
problems: protocol events send host messages in or-
der to simulate the parallel machine. Mechanisms
would hence be required to undo incorrectly sent mes-
sages and incorrectly simulated protocol events. We
implement the classical solution proposed by Jeffer-
son [8] and send anti-messages that annihilate incor-

rectly sent messages.? All protocol events essentially
perform one or more of the following actions:

¢ Modify the state of a block (either in the target
cache or directory). For example, an invalida-
tion event would mark a cache block invalid; a
directory event could set a bit associated with the
block to indicate that a target node has a cached

copy.

e Send one or more messages to other host nodes.
For example, an invalidation event would send an
acknowledgement message to (the host node that
simulates) the directory indicating that the block
has been invalidated; a directory event could send
a copy of a block to (the host node that simulates)
the cache in response to a request.

e Update the logical clock of the hardware that ser-
vices the event, i.e., cache or directory.

Since directly executed programs can modify any
part of their virtual address space, copying the en-
tire state of the cache or the directory would be pro-
hibitively expensive. Protocol events, however, mod-
ify memory in block sizes (typically 32-128 bytes). It
makes sense, therefore, to save the state of the target
block that was modified by each optimistically simu-
lated event. Analogously, restoring the target state is
also done incrementally and is a four-step process:

1. Restore the state of each directory entry that was
modified optimistically. For instance, this might
result in sending an anti-response message to the
node that requested a copy and clearing a bit to
restore the bit vector of owners.

2. Restore the state of all optimistically modified
cache blocks. For instance, this could involve
marking a cache block as walid to undo an in-
validation event.

3. Restore the state of the memory modified by di-
rectly executing the target (Section 3.2).

4. Copy the target program registers from the check-
point buffer (Section 3.1).

This technique requires about 4K bytes of memory
for saving protocol state in addition to the memory

2Although anti-messages are generated immediately, they
are buffered and sent only when the logical clock sweeps past
the timestamp of the incorrect message without regenerating
the same message (i.e., we implement lazy cancellation).

120

Conservative Simulation

,_.
8
1
]
>

Optimistic Simulation

Number of Quanta (thousands)
3
1

20

o 12 3 D_g_ % 0.7 1 m
I

2 4 8 16 32 64 128
Idle Time (thousand host cycles)

Figure 2: Histogram of idle times.

This figure shows a histogram of the average host idle time in
each quantum when executing Ocean. The idle time is the time
spent by a host node waiting for other nodes to synchronize. In
the conservative scheme the average idle time is mostly between
8,000 and 16,000 cycles while the optimistic scheme results in
an average idle time mostly between 32,000 and 64,000 cycles.

required to save target processor and memory state.
The additional memory is still less than 1% of the
memory used by an application that has a data set
size of 1IMB.

4.2 Performance

Table 4 compares the performance of the aggres-
sive optimistic technique and the conservative simula-
tion. For the sake of convenience, we reproduce the
time taken for simulation using conservative simula-
tion from Table 2. The results clearly demonstrate
that the conservative simulation outperforms the ag-
gressive simulation. The increase in average quantum
length denotes that the aggressive simulation is able
to synchronize less often. The performance of the ag-
gressive simulation is sensitive to the mega-quantum
length. Large optimistic windows increase the scope
for useful work to be done before synchronization and
hence allows the simulation to synchronize less often
(up to 60% less often). However, this comes at a high
cost; the probability of an event being simulated in-
correctly increases greatly as nodes move further from
the global virtual time. Undoing incorrectly processed
events leads to an avalanche of anti-messages. For ex-
ample, for Ocean and Sparse the message traffic in-
creased by up to 66% due to the aggressive simula-
tion. Computation-bound applications such as Wa-
ter do not suffer from the effect of numerous anti-
messages. Instead, such applications tend to rollback
and redo their computations. For example, with Wa-
ter the time spent in executing instructions in the tar-
get program increased by up to 300%. Figure 2 il-
lustrates the difference in load imbalance using a his-
togram of idle times. The load imbalance could be
reduced if a host node can detect that one or more
host nodes are waiting at the barrier and stop opti-
mistic simulation. Unfortunately the CM-5 does not

Conservative Aggressive Optimistic Simulation
Simulation

Application | Procs Time Time Average Quantum

(million cycles) || (million cycles) Length (cycles) Slowdown
Ocean 8 7097 14867 187 2.09
Ocean 16 4398 9951 173 2.26
Ocean 32 3245 8509 154 2.62
Sparse 8 1775 3406 195 1.92
Sparse 16 2098 4023 186 1.92
Sparse 32 3329 6012 193 1.80
Water 8 6733 11090 248 1.65
Water 16 5100 9876 244 1.93
Water 32 4029 8805 238 2.18

Table 4: Performance of conservative vs. aggressive optimistic simulation.

This table shows the simulation times, the average quantum length and the slowdown of the optimistic technique when compared to
the conservative simulation. The mega-quantum length for Ocean and Sparse was set to 200 cycles while the mega-quantum length
for Water was set to 300 cycles. While the simulation times refer to the host cycles (in millions), the average quantum length refers

to the target cycles.

provide a fast broadcast mechanism that can enable
all host nodes to synchronize as soon as the first node
enters the barrier.

We performed experiments using four other shared-
memory benchmarks (Barnes, Cholesky and Mp3d
from the SPLASH benchmark suite [17] and a par-
allelized version of Appbt [1]) and obtained similar re-
sults. We restricted the presentation to three applica-
tions in the interest of brevity.

5 Scenarios Favorable to Optimistic

Simulation

The results presented in the earlier sections demon-
strate that for the default WWT assumptions (i.e., no
target network simulation, constant target network la-
tency of 100 cycles), the conservative technique has
adequate lookahead to offer better performance than
both optimistic techniques when executing our shared-
memory applications on the CM-5. We now consider
two scenarios that are more favorable to optimistic
simulation.

Less Lookahead Due to Network Simulation:
Without network simulation, the quantum length was
equal to 100 cycles for the conservative algorithm and
> 100 cycles for optimistic algorithms. Depending
on the desired accuracy of simulation of the target
network contention and topology, the quantum length
must be less than or equal to the message latency.
The fixed network latency assumption results in an
error of over 20% in several cases [2]. Reducing the
quantum length results in a further increase in the
synchronization cost. Since optimistic techniques im-
prove the lookahead and reduce the frequency of syn-
chronization, they may perform better if the network
simulation messages are not rolled back frequently.

Greater Host Message Latencies: Parallel sys-
tems such as a network of workstations are becoming
popular since they provide low-cost alternatives to the
current generation of parallel machines (such as the
CM-5). We expect many of these systems to have
high latency messages (10-100s of us) and little or no

hardware support for synchronization. The CM-5, on
the other hand, provides fast messages and hardware
support for fast barriers and reductions (the latencies
of these operations are all less than 10us on the CM-
5). Hyder and Wood study the implications of latency
and synchronization tradeoffs using a variety of appli-
cations [7].

How would high latency networks and no hardware
synchronization affect the trade off between conserva-
tive and optimistic simulation? Both techniques must
ensure that all messages sent during a quantum are
received before the beginning of the next quantum.
In the absence of synchronization hardware, each host
node must send an acknowledgment message for each
message that it receives and perform a simple soft-
ware barrier once all acknowledgments have been re-
ceived [7]. On a host with a network latency of 100us,
synchronization at the end of the quantum would be
an order of magnitude more expensive than on the
CM-5. This favors optimistic techniques since they
need to incur the high cost of this software synchro-
nization less often. Unfortunately, this saving does
not come for free—the costs of rolling back incorrect
messages also increases. Fortunately, this will not be
a dominating factor in applications that do not com-
municate often. Figure 3 illustrates that for applica-
tions with a low communication overhead, optimistic
techniques may be a better choice on future parallel
systems.

6 Related Work

This paper presented techniques to integrate direct
execution with optimistic simulation and studied the
performance of three simulation techniques. Unger et
al. [21] present an incremental state saving scheme in
the Jade simulation environment. A state manager
exports an interface to the application and calls this
interface before each change of a block of state. The
backtrace of memory snapshots are saved in a buffer
that is unwound on rollback. Incremental state saving
is performed in SPEEDES using two techniques [19].

T
8 nodes —
141 16 nodes —+-

12 el 4

04 | —

Optimstic Simulation Time / Conservative Simulation Time

02 4

0 L L L L L
100 150 350 400

200 250 300
Host Network Latency (microseconds)

Figure 3: Effect of host network latency on simulation
time.

This figure compares the performance of conservative and opti-
mistic simulations as the host network latency is increased. All
synchronization operations are performed in software. The ap-
plication program was Water running on 8 and 16 host nodes.
Points above 1 indicate that the conservative simulation is bet-
ter while points below 1 indicate that the optimistic simulation
performs better. With 8 nodes, optimistic simulation is always
faster, while with 16 nodes it performs better when the latency
is more than 250 us.

In the delta exchange method event processing is di-
vided into two steps —The first step does the basic
event, processing while the second step exchanges the
new state values. In the rollback queue mechanism
the C++ assignment operators are overloaded to au-
tomatically save state information.

Shah et al. [16] simulate a shared-memory target
machine on a shared-memory host. Their technique
is optimistic with respect to timing correctness and
reconciliation is performed only at synchronization
points. Rollback of the target program is never re-
quired because the underlying host machine keeps the
memory consistent and only data-race-free programs
are executed. However, only the target cache is simu-
lated and the technique has been shown to scale only
up to 8 processors. WWT models the parallel machine
more accurately and could use the above techniques
when the host is a shared-memory machine.

Falsafi and Wood [4] propose simulating multiple
target nodes in a single host node. The advantage of
this approach is that it reduces load imbalance. Unfor-
tunately, less memory is available to each target node
and architects may be restricted to using smaller input
data sets.

7 Extensions and Future Work

The most important deficiency of our work is a pre-
cise understanding of why optimistic simulations per-
formed worse than the conservative technique. This
may enable us to refine optimistic schemes and elim-
inate the drawbacks of the two techniques that we
studied. We have also not attempted to tradeoff ac-
curacy in the simulation for performance. We find

that incorrect computations almost always affect the
timing behavior of the system being simulated, but
rarely affect the functional behavior. Introducing ap-
proximations may reduce rollbacks of target program
execution and message sends.

We have used a simple algorithm for computing
the global virtual time(GVT). This algorithm requires
that all host nodes perform a barrier before the GVT
can be computed. Researchers have recently proposed
efficient algorithms to perform global synchronization
with optimistic simulation [11]. Since a large fraction
of the simulation time is spent in global synchroniza-
tion, incorporating the new algorithms would improve
the performance of optimistic simulation.

Finally, we are in the process of porting WWT to a
cluster of workstations connected by a Myrinet switch.
The network latency of this host system is about 100us
and it has no synchronization hardware. We expect
that this implementation would give us new insights
and help us better understand the performance of var-
ious parallel simulation techniques.

8 Conclusions

This paper presented new techniques to integrate
direct execution of a parallel application and opti-
mistic parallel simulation. We used checkpointing and
incremental logging to correctly save and restore the
state of directly executed program executables. We
used these techniques to develop two optimistic strate-
gies for parallel simulation that represent the ends of
the spectrum of the degree of optimism. A risk-free
technique executed only target program instructions
optimistically and resorted to a global virtual time
calculation before simulating protocol events. An ag-
gressive technique used a Time-Warp-like algorithm to
simulate protocol events and send messages optimisti-
cally.

We compared the performance of these techniques
with the conservative simulation algorithm. We found
that for the shared-memory applications that we ex-
ecuted on a CM-5 host, the conservative technique
offered better performance. The behavior was similar
for three different target system sizes—8, 16, and 32
nodes and three different application programs each
having a different communication pattern. Optimistic
simulations are plagued by two main problems when
used for simulating parallel machines using program
executables:

e Simple optimistic techniques that avoid the com-
plexity of undoing protocol events and message
sends are unable to improve the lookahead in the
simulation. The additional overhead accompa-
nied by little gains make them perform up to
twice as slow as the conservative simulation.

e Aggressive optimistic techniques improve the
lookahead and are able to reduce the frequency
of synchronization. However, these gains come at
a very high cost; lowering the costs by restricting
the size of the optimistic window also relinquishes
chances of increasing lookahead. We found that
the Time Warp like technique performs up to 2.5
times slower than the conservative simulation.

Several researchers have reported successes with us-
ing optimistic simulation [5, 12, 22]. The two notable
reasons for the sharp contrast in our conclusions are:

e QOur workloads are directly executed programs.
Previous studies of simulation strategies have
been mostly performed using synthetic workloads,
not program executables.

e Qur target system is a parallel machine with an
interconnection network that provides full con-
nectivity. An implication of this is that a rollback
in a node could potentially affect any other node
in the system within a logical time equal to the
latency of the target network.

We surmise that optimistic techniques may per-
form better when the host machine has a high net-
work latency (100s of ps), no hardware support for
synchronization and the parallel application being ex-
ecuted does not communicate often. Unfortunately, it
is debatable whether parallel simulation itself is cost-
effective with such host system parameters. Decreas-
ing the quantum length for detailed simulation of the
target network may also favor optimistic simulation
when the network simulation messages are not rolled
back frequently.

Acknowledgment

We thank Doug Burger, Babak Falsafi, Alain Kégi,
Rahmat Hyder, Steve Reinhardt and David Wood for
helping us understand WWT and for useful sugges-
tions that improved this paper. David Wood con-
tributed to the genesis of some of the optimistic tech-
niques described in this paper. We thank James Larus
for generously supporting EEL, Rahmat Hyder for
providing code that simulates high latency host ma-
chines and the anonymous referees for comments on
an earlier draft of this paper. We thank David Wood
and Steve Reinhardt for pointing out an error in the
network simulation experiments. We thank all the
members of the Wisconsin Wind Tunnel project for
technical support and encouragement that made this
research possible.

References

[1] David Bailey, John Barton, Thomas Lasinski, and Horst
Simon, The NAS Parallel Benchmarks, Technical Report
RNR-91-002, Revision 2, Ames Research Center, August
1991.

[2] Doug Burger and David A. Wood, Accuracy vs. Per-
formance in Parallel Simulation of Interconnection Net-
works, International Symposium on Parallel Processing,
April 1995.

[3] Helen Davis, Stephen R. Goldschmidt, and John Hennessy,
Multiprocessor Simulation and Tracing Using Tango, In
Proceedings of the 1991 International Conference on Par-
allel Processing (Vol. II Software), pages I199-107, August
1991.

[4] Babak Falsafi and David A. Wood, Cost/Performance of
a Parallel Computer Simulator, In Proceedings of PADS,
1994.

(10]

(11]

(12]

(13]

(14]

(17]

(18]

(20]

(21]

(22]

Richard M. Fujimoto, Performance of Time Warp Under
Synthetic Workloads, Proceedings of the SCS Multiconfer-
ence on Distributed Simulation, January 1990.

Richard M. Fujimoto, Parallel Discrete Event Simulation,
Communications of the ACM, 33(10):30-53, October 1990.

Rahmat Hyder and David A. Wood, Synchronization Sup-
port for Networks of Workstations, In Proceedings of the
International Conference on Supercomputing (ICS), 1996.

David R. Jefferson, Virtual Time, ACM Transactions on
Programming Languages and Systems, 7(3):404-425, July
1985.

James R. Larus and Eric Schnarr, FEFEL: Machine-
Independent Ezecutable Editing, Programming Languages
Design and Implementation (PLDI), 1995.

David Nicol, Conservative Parallel Simulation of Priority
Class Queuing Networks, IEEE Transactions on Parallel
and Distributed Systems, 3(3):398-412, May 1992.

David Nicol, Global Synchronization for Optimistic Paral-
lel Discrete Event Simulation, Proceedings of the seventh
workshop on Parallel and Distributed Simulation, July
1993.

Presley, M., Ebling, M., Wieland, F., and Jefferson, D. R.,
Benchmarking the Time Warp Operating System with a
computer network simulation, In Proceedings of the SCS
Multiconference on Distributed Simulation, 21, 2 (March
1989), pp. 8-13.

Steven K. Reinhardt, Babak Falsafi, and David A. Wood,
Kernel Support for the Wisconsin Wind Tunnel, Proceed-
ings of the Second USENIX on Microkernels and Other
Kernel Architectures, September 1993.

Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin
R. Lebeck, James C. Lewis, and David A. Wood, The
Wisconsin Wind Tunnel: Virtual Prototyping of Parallel
Computers, ACM SIGMETRICS, 1993.

P. Reynolds, A Spectrum of Options for Parallel Simula-
tion, Proceedings of the 1988 Winter Simulation Confer-
ence, pages 325-332.

Gautam Shah, Umakishore Ramachandran, and Richard
Fujimoto, Timepatch: A nowvel technique for the parallel
simulation of multiprocessor caches, TR-94-52, GIT, Oc-
tober 1994.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop
Gupta, SPLASH: Stanford Parallel Applications for
Shared Memory, Computer Architecture News, 20(1):5-44,
March 1992.

Jeff S. Steinman, SPEEDES: A Multiple-Synchronization
Environment for Parallel Discrete-Event Simulation, In-
ternational Journal in Computer Simulation, Vol. 2, Pages
251-286.

Jeff S. Steinman, Incremental State Saving in SPEEDES
using C++, In Proceeding of the 1993 Winter Simulation
Conference, Pages 687-96.

Thinking Machines Corporation, The Connection Ma-
chine CM-5 Technical Summary, 1991.

Brian W. Unger, John G. Cleary, Alan Covington, and
Darrin West, An External State Management System for
Optimistic Parallel Simulation, In Proceedings of the 1993
Winter Simulation Conference.

Wieland, F. et al., Distributed combat simulation and
Time Warp: The model and its performance, In Proceed-
ings of the SCS Multiconference on Distributed Simulation
21, 2 (March 1989), pp. 14-20.

