
Wisconsin Wind Tunnel II:
A Fast and Portable Parallel Architecture Simulator

Shubhendu S. Mukherjee* , Steven K. Reinhardt✝, Babak Falsafi* , Mike Litzkow* , Steve Huss-Lederman* ,

Mark D. Hill* , James R. Larus* , and David A. Wood*

Workshop on Performance Analysis and Its Impact on Design (PAID), June 1, 1997

*Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706-1685 USA
URL: http://www.cs.wisc.edu/~wwt

Email: wwt@cs.wisc.edu

✝EECS Department
University of Michigan

1301 Beal Ave
Ann Arbor, MI 48109-2122 USA

URL: http://www.eecs.umich.edu/~stever
Email: stever@eecs.umich.edu

This work is supported in part by Wright Laboratory Avionics Directorate, Air Force Material Command, USAF, under grant #F33615-
94-1-1525 and ARPA order no. B550, NSF Grants CCR-9101035, MIP-9225097, and MIPS-9625558, NSF PYI/NYI Awards CCR-
9157366, MIPS-8957278, and CCR-9357779, DOE Grant DE-FG02-93ER25176, University of Wisconsin Graduate School Grant, Wiscon-
sin Alumni Research Foundation Fellowship and donations from Digital Equipment Corporation, IBM, Sun Microsystems, Thinking
Machines Corporation, and Xerox Corporation. Our Thinking Machines CM-5 was purchased through NSF Institutional Infrastructure Grant
No. CDA-9024618 with matching funding from the University of Wisconsin Graduate School. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Wright Laboratory Avionics Directorate or the U.S. Government.

Abstract
The design of future parallel computers requires

rapid simulation of target designs running realistic
workloads. These simulations have been accelerated
using two techniques: direct execution and the use of a
parallel host. Historically, these techniques have been
considered to have poor portability. This paper identi-
fies and describes the implementation of four key oper-
ations necessary to make such simulation portable
across a variety of parallel computers. These four
operations are: calculation of target execution time,
simulation of features of interest, communication of
target messages, and synchronization of host proces-
sors.

Portable implementations of these four operations
have allowed us to easily run the Wisconsin Wind Tun-
nel II (WWT II)—a parallel, discrete-event, direct-exe-
cution simulator—across a wide range of platforms,
such as desktop workstations, a SUN Enterprise server,
a cluster of workstations, and a cluster of symmetric
multiprocessing nodes. We plan to release WWTII in
August, 1997. We also plan to port WWT II to the IBM
SP2.

We find that for two benchmarks, WWT II demon-
strates both good performance and good scalability.
Uniprocessor WWT II simulates one target cycle of a 32-
node target machine in 114 and 166 host cycles respec-
tively for the two benchmarks on a SUN UltraSPARC.
Parallel WWT II achieves speedups between 4.1-5.4 on 8
host processors in our three parallel machine configura-
tions.

1 Intr oduction

Software simulation is an important technique for
studying computer architectures ranging from micro-
processors [4, 5] to parallel computers [3, 17, 24].
Simulation speeds up design by enabling architects to
evaluate computers without building hardware proto-
types. However, simulating big problems—parallel
machines with realistic workloads—requires large
amounts of computation and memory. Two tech-
niques, direct execution and parallel simulation, make
this approach feasible.

In direct execution [6], a program from the system
under study (thetarget) runs on an existing system
(thehost). For example, a target’s floating-point mul-
tiply executes as a floating-point multiply instruction
on the host. The host calculates the target’s execution
time and only simulates operations unavailable on the
host.

Direct execution can run orders of magnitude faster
than pure software simulation (which interprets every
target instruction). This approach can accurately cal-
culate the target execution time for statically sched-
uled processors with blocking caches [6]. However,
computing the execution time for dynamically sched-
uled processors with non-blocking caches is an open
problem [15].

Parallel simulation of a parallel computer further
speeds simulation by exploiting the parallelism inher-
ent in the target parallel computer and the parallel
host’s large memory to hold the simulator’s working

2

Workshop on Performance Analysis and Its Impact on Design (PAID), June 1, 1997

set without paging. The advent of low-cost parallel
computers, such as symmetric multiprocessors
(SMPs) and clusters of workstations (COWs), make
parallel simulation very attractive.

Unfortunately, parallel, discrete-event, direct-exe-
cution simulators are complex pieces of software that
can be difficult to build and port. Portability is a desir-
able goal because of the wide range of processor
architectures and parallel computers. In part, parallel,
discrete-event, direct-execution simulators are not
portable because they rely on machine-specific fea-
tures. Direct-execution simulators are tied to specific
instruction sets by the need to modify target executa-
bles or assembly code to calculate a target’s execution
time and simulate missing features. Some simulators
[17, 22] also modify the operating system to detect
target cache misses. Similarly, parallel simulators
often use machine-specific synchronization and com-
munication features to achieve good parallel perfor-
mance.

As the authors and users of two generations of par-
allel direct-execution simulators, we are painfully
aware of these low-level dependencies. In building
our tools, we have identified four key operations that
underlie parallel, discrete-event, direct-execution sim-
ulation:

• calculation of target execution time,

• simulation of features of interest,

• communication of target messages, and

• synchronization of host processors.

The main contribution of this work is to identify
and implement these four operations in a fashion that
minimizes the dependence of a parallel simulator on
host-specific features. Section2 examines alternative
implementations of these four operations. Section3
and Section4 describe two tools, calledElsie and
Synchronized Active Messages (SAM)that encapsulate
these operations in a portable way. Elsie is an editor
that modifies executables to calculate target execution
time and simulate a parallel computer’s memory sys-
tem.SAM is a messaging library that supports parallel
simulation.

Using Elsie and SAM, we ported theWisconsin
Wind TunnelII (WWTII)—the successor to the origi-
nal Wisconsin Wind Tunnel (WWT)[17]—to a wide
range of platforms, including desktop workstations, a
SUN Enterprise server, and a Cluster of SPARCsta-
tions. We are also portingWWTII to the IBM SP2.
We find thatWWT II shows excellent to modest per-
formance on our different platforms (Section5 and
Section6). In Section7 we present our conclusions.

We plan to releaseWWTII in August, 1997. The
exact release date and additional information about

WWTII will be available from the URL:http://
www.cs.wisc.edu/~wwt/wwt2/.

2 Operations

In this section we discuss alternative implementa-
tions of four key operations that underlie parallel, dis-
crete-event, direct-execution simulation. These
operations help isolate host-specific features, which
makes it easy to port and tune the performance of a
parallel simulator. The first two operations—calcula-
tion of target execution time (Section2.1) and simula-
tion of features of interest (Section2.2)—relate to
direct execution, while the last two—communication
of target messages (Section2.3) and synchronization
of host processors (Section2.4)—relate to quanta-
based, parallel, discrete-event simulation.

2.1 Calculation of Target Execution Time

Simulation is generally uninteresting without a tar-
get’s execution time. In pure software simulation,
which interprets every target instruction, calculating a
target’s execution time is simple. The simulator
updates a clock variable after simulating each target
instruction. Unfortunately, returning control to the
simulator after every instruction defeats the purpose
of direct execution. This is because direct execution
speeds simulation by directly executing blocks of tar-
get instructions on host hardware without any simula-
tor intervention. Consequently, jumping into the
simulator after every instruction to update the target
clock can be expensive for direct execution.

The cost of updating a target clock variable can be
reduced in two ways. First, instead of updating the tar-
get clock after every instruction, we can update it at
edges of basic blocks in a routine’s control flow-
graph. Ball [1] showed how to optimize this by updat-
ing a counter, such as the target clock, only on a sub-
set of edges. Second, instead of jumping into the
simulator, the target itself can maintain and update its
own target clock variable. This implies that the target
code must be augmented with extra code that updates
the target clock. We call this target clock instrumenta-
tion.

Target clock instrumentation can be done at four
levels: source code [6], assembly code [3, 7], object
code, and executable [17]. Unfortunately, the first
three approaches require source, assembly, or object
code, which may be hard to obtain for vendor-pro-
vided libraries or commercial operating systems and
databases. Executable modification removes this
restriction. However, executable modification intro-
duces two problems. First, it is complex to implement
because the executable editor must handle machine-
specific details (e.g., fix branch addresses after the

3

Workshop on Performance Analysis and Its Impact on Design (PAID), June 1, 1997

introduction of target clock instrumentation code).
Second, like assembly or object code modification,
executable modification makes the simulator depen-
dent on a specific instruction set. Consequently, calcu-
lating the target execution time via executable
modification has been considered to have poor porta-
bility.

Fortunately, researchers have recently developed
executable editing tools that allow users to traverse
the control-flow graph of a target executable and
introduce foreign code in an almost machine-indepen-
dent fashion. These tools relieve the writers of execut-
able editors from worrying about low-level machine-
specific details. In Section3, we show how we used
one such tool, called EEL [13], to build an executable
editor, calledElsie, to perform the target clock instru-
mentation on target executables.

2.2 Simulation of Features of Interest

Researchers build simulators to study proposed
parallel architectures. Hence, simulators must allow
researchers to simulate new features, which may or
may not be currently available in a parallel host. For
example,WWTsimulated a hardware, cache-coherent,
shared-memory machine on the TMC CM-5, which is
a message-passing parallel machine.

In direct execution, to simulate features missing in
a host, the target often needs the ability to jump into
the simulator on specific target instructions. For
example, to simulate the target memory system, the
target must transfer control to the simulator on target
loads and stores.

Researchers have used two approaches to simulate
features missing in the host. The first approach uses
hardware and software mechanisms available in the
host to simulate specific target features. For example,
WWT and TapewormII [22] marked host memory
blocks that are absent in the target cache or TLB with
bad ECC. Accesses to memory blocks with bad ECC
generated traps that were vectored to the simulator via
the operating system. This allowed WWT and
TapewormII to simulate cache and TLB misses,
respectively. Unfortunately, this method is not easily
portable because it requires operating system modifi-
cation to catch the ECC traps. Additionally, most
dynamically-scheduled processors are unlikely to sup-
port precise exceptions on ECC error. Without precise
exceptions, a simulator will not be able to correctly
simulate target cache misses.

The second approach is to replace target instruc-
tions with code segments that transfer control to the
simulator. This approach is more general than the pre-
vious approach. However, this method can pay a per-
formance penalty for its generality. For example, to
simulate target cache misses, all loads and stores must

check the target cache state, unlike theWWTapproach
in which the simulator checked the target cache block
state only on target cache misses.

Replacing instructions with new code segments
introduces problems similar to those faced by target
clock instrumentation. Hence, our solution is similar.
We augment Elsie (Section3) to replace target
instructions to simulate features missing in the host.
In our case, this feature is the target memory system.

2.3 Communication of Target Messages

Communication is inherent in parallel simulation
because target nodes exchange messages with one
another. However, the native communication support
differs radically across parallel computers. Massively
Parallel Processors (MPPs) are programmed with
explicit message-passing, COWs with sockets, and
SMPs with shared memory. Consequently, the com-
munication code written for one machine cannot be
easily ported to another machine. To overcome this
problem, we have developed a simple messaging
library calledSynchronized Active Messages (SAM),
which abstracts away the communication primitives
from the mechanisms and techniques used in imple-
mentation. This allows us to easily portSAM across
different parallel computers.

2.4 Synchronization of Host Processors

Parallel, discrete-event simulation (PDES) that
uses the conservative time bucket synchronization
method [21] must rapidly synchronize host proces-
sors. In this method, target execution is broken up into
lock-step intervals called quanta (Figure1). Target
messages sent during one quantum can only affect tar-
get state in subsequent quanta.

Quanta-based PDES imposes three synchronization
requirements. First, host processors must be able to
determine that a quantum has expired, and thus syn-
chronize with the target node. Second, when a quan-
tum expires, host processors must synchronize among
themselves using a barrier and calculate the duration
of the next quantum interval. The duration of the next
quantum interval is often calculated as the sum of the
minimum target execution time across all host proces-
sors (conventionally called a reduction) and a fixed
quantum length (e.g., 100 target processor cycles).
Third, host processors must ensure that all messages
sent in a quantum are received and processed before
the beginning of the next quantum. This allows a host
processor to schedule reception of all target messages
at the beginning of a quantum. The following three
paragraphs discuss each of these three synchroniza-
tion requirements.

4

Workshop on Performance Analysis and Its Impact on Design (PAID), June 1, 1997

There are two ways to determine if a quantum has
expired. First, the simulator can check quantum expi-
ration on specific entry points into the simulator. This
approach is very efficient if the target frequently
returns control to the simulator (e.g., on every load
and store).WWTII uses this approach. However, this
approach can hurt performance if simulated features
do not recur frequently. This is because target nodes
may not synchronize frequently enough, and conse-
quently, target nodes waiting for messages from other
target nodes may not make progress. Second, we can
modify a target executable to check the progress of
target execution time at specific points (e.g, on target
clock updates) and jump into the simulator if a quan-
tum has expired. This is a more robust method, but
introduces additional overhead compared to the first
method.

Different parallel computers provide different
degrees of hardware support for barrier synchroniza-
tion and reductions. For example, the TMC CM-5
supports both hardware barriers and hardware reduc-
tions, while the Cray T3E supports only hardware bar-
riers. In contrast, the SUN Enterprise E5000 or a
COW connected with Myricom Myrinet switches
have no hardware support for either; hence, these
machines must implement both in software. Lack of
hardware support for barriers and reductions can
degrade the performance of quanta-based PDES, par-
ticularly when the quantum intervals are short.

Most parallel computers do not provide hardware
support to determine if all messages injected into a
host network have been drained (the TMC CM-5 is a
notable exception). However, there are a variety of
ways of doing this in software. For example, we can
collect acknowledgments for every message injected
into the network. Alternatively, we canpiggyback all
messages over a software barrier (e.g., our COW
implementation of synchronization and communica-
tion described in Section4), which would guarantee
message reception before the beginning of a new
quantum.

3 Elsie

Elsie modifies target executables that run on
WWTII (Figure2) to achieve the calculation of target
execution time and simulate features of interest. Like
other executable editors for direct-execution simula-
tors [24, 17],Elsie adds instrumentation to calculate
the target’s execution time and to simulate the target’s
memory system. Surprisingly, Elsie can be written in
an almost machine-independent fashion for three rea-
sons. First,Elsie uses the EEL executable editing
library [13], which hides most details of modifying
executables. EEL provides operations thatElsie uses
to traverse a target executable’s control-flow graph
and to addcode snippets. Snippets contain machine-
specific instructions, whichElsie adds to edges in a
control-flow graph to track the target’s execution time.
Elsie also replaces target memory instructions (e.g.,
loads and stores) with snippets that jump into the sim-
ulator, which simulates the target memory system.
Second, there are few machine-dependent snippets
and they are small. The eight mandatory snippets all
contain four or fewer instructions each. Consequently,
only small portions of machine-specific code must be

Quantum

T
im

e

Processing time
Idle time
Global synchronization

0 1 2 3

Host Processors

FIGURE 1. This figure shows how quanta-based PDES
simulates a parallel target machine. Each host
processor directly executes target instructions and
simulates target events (processing time), enters an idle
phase in which it spins for the global synchronization to
begin, and then resumes execution after the
synchronization.

Legend

Target Source Code

Standard C Compiler

Target Executable

Elsie

Instrumented Target Executable

Wisconsin Wind Tunnel II

Target output
Target execution time

WWT II statistics

Host
Configuration(WWT II)

FIGURE 2. This figure shows how Elsie is related to
WWT II.

5

Workshop on Performance Analysis and Its Impact on Design (PAID), June 1, 1997

rewritten to portElsie to a different instruction set.
Finally, EEL itself runs on different instruction-set
architectures, such as the SPARC and the IBM RS/
6000. Hence, portingElsie from a SPARC to an IBM
RS/6000 only requires rewriting machine-dependent
snippets.

The introduction of code snippets to target executa-
bles incurs only a modest increase in the size of the
target executable’s text segment. The instrumentation
overhead (measured in number of instructions added
statically) for target execution time and memory
instruction simulation are 68% and 70% respectively,
averaged across our target benchmarks (Table2). This
is comparable to the instrumentation overhead intro-
duced by MIT Proteus [3] or Stanford Embra [24].

In practice, Elsie’s instrumentation overhead in
terms of actual execution time can be even lower for
two reasons. First, the instrumentation overhead is
perfectly parallelizable, becauseElsie does not add
extra instrumentation code for parallel simulation.
Second, EEL can hide instrumentation overhead by
scheduling instrumentation instructions in idle super-
scalar execution slots [19].

The introduction of instrumentation code to jump
into the simulator to simulate every memory instruc-
tion increasesWWTII ’s overhead compared toWWT
or TapewormII . WWT and TapewormII have low
overhead because they directly execute memory
instructions that hit in the target cache (see
Section2.2). WWTII reduces this overhead by pro-
viding a fast path for loads and stores that hit in the
target cache. Normally, on a load or store, the simula-
tor translates the virtual address to the physical
address using the target TLB, indexes into the cache,
finds the appropriate cache block through a tag match,
checks the state of the cache block, and, on a cache
hit, loads or stores a value from or to the cache block.
Instead, in the fast path,WWTII maintains pointers to
all valid target cache blocks in each target TLB entry.
Thus, if a load or store hits in the target cache,
WWTII can directly find the block on a target TLB
access. The fast path optimization speeds upWWTII
by 8% (averaged across our target benchmarks) on a
SUN Enterprise E5000 machine running a 32-node
target on a uniprocessor host. All our results
(Section6) assume this last optimization.

4 Synchronized Active Messages (SAM)

Synchronized Active Messages (SAM) provides an
architecture-neutral programming model that unifies a
parallel host’s communication and synchronization
operations for a quanta-based, parallel, discrete-event
simulation. This achieves the communication of target

messages and synchronization of host processors in
the simulator.

SAM, by design, is very simple so that it can be
implemented easily across a wide range of parallel
machines. SAM provides three main primitives:
SAM_Send_Msg, SAM_Bcast_Msg, and SAM_Sync.
Host processors communicate using
SAM_Send_Msg, calculate the next quantum dura-
tion using SAM_Bcast_Msg (that is, via broadcast
messages), and synchronize using SAM_Sync. Like
Active Messages [23], aSAM message contains a vir-
tual address of a handler that will be called at the
receiving host processor. However, unlike active mes-
sages,SAM does not guarantee message reception
until SAM_Sync completes. When SAM_Sync
returns,SAM guarantees that all messages have been
received and processed (so that messages have been
scheduled for the next quantum) by calling the corre-
sponding handlers.SAM calculates the next quantum
duration via message broadcasts for simplicity, and
thereby avoids a separate reduction interface, such as
the one in the TMC CM-5.

Currently, SAM runs on three platforms: an SMP, a
Cluster of Workstations (COW), and a Cluster of
SMPs (COW/SMP). Each implementation is opti-
mized to the platform’s underlying communication
substrate.

The SAM SMP implementation is straightforward
because our SMP (SUN E5000) supports efficient
low-latency communication over the memory bus.
SAM allocates a shared-memory segment and for each
process in the parallel programSAM sets up two sets
of mailboxes in shared memory—destination mail-
boxes and source mailboxes. A process’ destination
mailbox is used by another process to send a point-to-
point message to this process. Each message is explic-
itly copied into the destination mailbox because two
process’ only share the segment containing the mail-
boxes and not the entire address space.Mutual exclu-
sion of destination mailbox is ensured through an
atomic fetch-and-add operation. A process uses its
own source mailbox to enqueue broadcast messages.
We do not enqueue a broadcast message in the desti-
nation mailboxes because that would create multiple

P0 P1 P2 P3

FIGURE 3. SAM implementation for a COW. P0, P1, P2,
and P3 denote host processors. Dark boxes represent data -
here only P0 sends a message. Solid lines represent the flow
of synchronization messages with data (piggybacking).
Dotted lines represent flow of synchronization messages
without data.

T
im

e

6

Workshop on Performance Analysis and Its Impact on Design (PAID), June 1, 1997

copies of the same message. Finally, when a process
calls SAM_Sync,SAM drains a process’ own destina-
tion mailboxes and checks all other process’ source
mailboxes for broadcast messages. Subsequently,
SAM calls the handlers corresponding to each mes-
sage and returns control to the simulator.

The COW implementation ofSAM is more com-
plex. Analysis of the COW’s communication charac-
teristics reveals that minimizing latency and number
of messages are very important.WWTII sends few
messages (two or less, per processor) that are small
(80 or fewer bytes) in a quantum.

The standard model of the latency to send a mes-
sage from one process to another on the COW is:

end-to-end message latency = α + β * b,
whereα is the message latency for a zero-length mes-
sage,β is the incremental cost per byte, and b is the
number of bytes in a message. We use the Berkeley
Active Messages as the native communication layer
on the COW. For this messaging layer, α is 26µsecs
andβ is 0.071µsecs/byte, and the ratio ofα to β is
366 bytes. This shows that communication latency of
short messages is dominated byα, which means that
we should minimize the number of messages. The
highα to β ratio means that a modest increase in mes-

sage size does not significantly affect message
latency.

Taking these characteristics into account, we
implement SAM_Sync through a software butterfly-
style message exchange pattern. The number of stages
is logarithmic in the number of processors, thereby
reducing the number of messages on the critical path.
We further reduce the number of messages bypiggy-
backing the target messages from the current quantum
and the data needed to determine the next quantum
length on the butterfly synchronization. AsWWTII
sends very few short messages in each quantum, the
total cost of the butterfly is not substantially increased
over the synchronization cost, even though our piggy-
backing scheme sends all data to all host processors
(Figure3).

The COW/SMP implementation combines the
COW and SMP implementations. The host processors
within an SMP first exchange their messages. Then
one pre-designated host processor in each SMP node
exchanges messages with other host processors fol-
lowing the same piggybacked butterfly as shown in
Figure3. Finally, host processors within an SMP syn-
chronize locally to ensure that the pre-designated pro-
cessor has drained all messages from the network.

5 Methodology

This section describes our experimental frame-
work, WWTII , and the target architecture and bench-
marks we use for this study. Table1 shows our three
different parallel machine configurations. Our SMP is
a SUN E5000 machine with eight 167 MHz UltraS-
PARC processors connected with a split-transaction
memory bus called the UltraGigaplane [20]. The
COW nodes have 67 MHz HyperSPARC processors
and are connected with Myricom Myrinet switches
[2]. The COW/SMP is the same as the COW, except
that each node has two processors, instead of one.
Each COW node has a 50 MHz in-order memory bus
called the MBus [12]. We use 8 COW nodes and 4
dual-processor COW/SMP nodes to equalize the num-
ber of host processors in the COW and COW/SMP
configurations.

Parallel
Machine

Host
Processor

Inter -Host
Communication

N P

Memory
Bus

Network

SMP
(8-proces-
sor
SUN
E5000)

167 MHz
UltraS-
PARC

83.5
MHz,
256-bit
wide

N/A 1 8

COW
(unipro-
cessor
SPARC-
server20)

67 MHz
Hyper-
SPARC

50 MHz,
64-bits
wide

Myri-
com

Myrinet
switches

8 8

COW/
SMP
(dual-pro-
cessor
SPARC-
server20)

67 MHz
Hyper-
SPARC

50 MHz,
64-bits
wide

Myri-
com

Myrinet
switches

4 8

TABLE 1. This table shows the experimental
configuration for our parallel machines. N = number of
nodes and P = total number of host processors in each
machine. Each node of our COW is equipped with two
processors. However, for the COW runs we only use
one processor, whereas for the COW/SMP runs we use
both the processors in a COW node.

Target
Benchmark

Description Input Data Set

FFT Performs Fast Fou-
rier Transform

Points = 210

Radix Performs integer
radix sort

Keys = 256K
Max Key = 512K
Radix = 1K

TABLE 2. This table shows the target benchmarks and
the corresponding input data sets we used for our
experiments.

7

Workshop on Performance Analysis and Its Impact on Design (PAID), June 1, 1997

WWTII is the successor toWWT, but is more
detailed and flexible compared toWWT. Table3 lists
the differences betweenWWTII andWWT. We have
already usedWWTII for several research efforts [9,
14, 18, 16].

For this study, we have chosen a 32-node S-COMA
[10] shared-memory machine as our target architec-
ture. Each target node has a single processor and a
256 kilobyte processor cache. Hardware coherence is
implemented through a full-map directory protocol.
Each host processor inWWTII simulates one or more
target nodes. For example, for a 32-node target, an 8-
processorWWTII configuration simulates 4-target
nodes per host processor.

Table2 shows the two target benchmarks and cor-
responding input data sets we used for our study. Both
FFT and Radix are SPLASH2 applications [25].

In all our measurements in Section6 we report the
time it tookWWTII to execute only the parallel por-

tion of each target benchmark. We assume SPARC V8
instruction set for our target benchmarks so all of our
host processors are SPARC V8 compatible. Addition-
ally, sinceWWTII takes the same path through the
target executable, all our target executable runs report
exactly the same target execution cycles, irrespective
of which of our three platforms ran the experiments.
WWTII takes the same path through the executable
because we impose a strict ordering of events. This
control over the experimental framework is essential
to effectively characterizeWWTII ’s performance
across our three platforms.

6 Performance Results

This section describesWWTII ’s performance and
scalability on our three parallel machines. We charac-
terize WWT II’s performance using a metric called
slowdown. We define slowdown as follows:

Thus, slowdown is the rate at which a host simulates
target node cycles (Table4).

On our SMP, WWTII ’s slowdown is modest
(between 25-166), while on the COW and COW/SMP,
WWTII ’s slowdown is slightly worse (between 37-
241) compared to the SMP. On the SMP, WWTII ’s
slowdown is comparable to MIT Proteus’ slowdown
(between 35-100 on a uniprocessor host) [3]. How-
ever, such comparison of slowdown between different
simulators may not be insightful because slowdown

a. A subset of these target architectures will be
made available in the final distribution ofWWT II.

Differ ences WWT WWT II

Host Plat-
forms

TMC CM-5 Workstation, SMP, COW,
COW/SMP

Target
Architec-
tures CC-NUMA

CC-NUMA, S-COMA,
software DSM, SMP, and
Tempest (active messages
and shared memory)[11]a

Memory
Bus

Contention-
free

Detailed simulation of a
coherent memory bus

Network
Optional Net-
work Simula-

tion

Network is not modeled,
but network contention is
modeled at the network

interfaces

Source
Language

C C++ (primarily)

Number of
non-blank,
non-com-
ment lines
of simula-
tor source
code

~16,000 ~30,000

TABLE 3. This table shows the difference between
WWT and WWT II. CC-NUMA = Cache-Coherent
Non-Uniform Memory Ar chitecture. COMA = Cache-
Only Memory Ar chitecture. DSM = Distributed
Shared Memory. SMP = Symmetric Multiprocessor.
The lines of source code reported above does not
include the lines of source code for the executable
editors, SAM, or the target benchmark.

Bench-
mark

Number
of Host
Proces-

sors

K Slowdown

SMP COW COW/
SMP

FFT

1 32 166 241 241

2 16 95 159 170

4 8 54 65 117

8 4 36 45 47

Radix

1 32 114 186 186

2 16 66 103 139

4 8 39 55 80

8 4 25 37 46

TABLE 4. This table shows WWT II’s slowdown. K =
number of target nodes simulated per host processor.
For all the above measurements, the target size is
constant, i.e. 32 nodes (second column * third column).

slowdown =
Maxi [host cycles]

Σj [target cycles]

i = 1 ... number of host processors,
j = 1 ... number of target nodes

,

8

Workshop on Performance Analysis and Its Impact on Design (PAID), June 1, 1997

depends on the functionality and level of detail sup-
ported by a simulator.

Figure4 provides further insight intoWWTII ’s
scalability. It shows the breakdown of the average
processing time, idle time, and global synchronization
time, as was done qualitatively in Figure1. The pro-
cessing time is the sum of the execution time for all
target processes. The idle time represents the fact that
processing time is not uniformly distributed. Thus, it
is the number of host processors multiplied by the
critical path processing time minus the processing
time. The critical path processing time is the sum of
the maximum processing time across hosts for each
quantum. Measuring the global synchronization time
is more difficult. This occurs because the synchroni-
zation at the end of each quantum does not imply that
all host processors leave SAM at the same time. An
efficient software implementation of a barrier (syn-
chronization) is unlikely to cause all processors to
complete the barrier simultaneously. The only
requirement is that no processes exit until all proces-
sors have entered the barrier. Consequently, an actual
machine does not have the nice clean picture shown in
Figure1. The easiest way to overcome these issues is
to define the synchronization time to be the difference
between the total time and the critical path processing
time. This works since the measured processing times
are not effected by the variation in barrier exit times.
This is how the results presented here were calculated.

Figure4 shows three interesting characteristics of
WWT II. First, WWTII scales similarly for the SMP
and the COW. However, COW/SMP scales (and per-
forms) slightly worse than the COW for the same
number of host processors. This is because the pro-
cessing time on the COW/SMP is worse than that on a
COW. We suspect this difference is caused by our
COW/SMP node’s memory system,which does not
scale as well with increasing processors due to the
particular memory bus used within one node.

Second, the global synchronization time is a small
fraction of the total execution time (between 4-17%).
This implies that our implementation of SAM and the
synchronization layer is quite efficient. Further
improvements in the synchronization layer can
improve performance only marginally.

Third, with increasing host processors, the idle
time introduced due to load imbalance within a quan-
tum is a dominant factor of the total execution time.
This idle time appears to be the key limiting factor to
WWTII ’s scalability. For example, on 8 host proces-
sors, the idle time accounts for 33-46% of the total
execution time. Consequently, WWTII achieves a
speedup of 4.1-5.4 on 8 host processors, which is
good, but less than linear. We believe that the idle time
increases with increasing host processors because we

have a fixed number of total target nodes. This
increase occurs because the deviation of processing

FIGURE 4. This figure shows how WWT II’s scales for
FFT (a) and Radix (b) on our three parallel machines.
HP denotes the number of host processors in each
configuration. The vertical axis shows the total
execution time for a particular configuration di vided
by the total execution time on one host processor of the
corresponding machine. On a single host processor,
WWT II runs on average 3.8 times faster on the SMP
compared to the COW. The COW/SMP execution time
on a single host is identical to that of the COW. Each
execution time bar is further divided up into average
processing, idle, and global synchronization times. The
global synchronization time on a single host denotes
the overhead of switching to a different target node,
while that on multiple host processors denote both the
overhead of switching target nodes and synchronizing
with other host processors.

(a) FFT

(b) Radix

S
M

P
,H

P
=

1
C

O
W

,H
P

=
1

C
O

W
/S

M
P

,H
P

=
1

S
M

P
,H

P
=

2
C

O
W

,H
P

=
2

C
O

W
/S

M
P

,H
P

=
2

S
M

P
,H

P
=

4
C

O
W

,H
P

=
4

C
O

W
/S

M
P

,H
P

=
4

S
M

P
,H

P
=

8
C

O
W

,H
P

=
8

C
O

W
/S

M
P

,H
P

=
8

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 E

xe
cu

tio
n

 T
im

e

�

Processing Time
Idle Time
Global Synchronization

�

S
M

P
,H

P
=1

C
O

W
,H

P
=1

C
O

W
/S

M
P

,H
P

=1

S
M

P
,H

P
=2

C
O

W
,H

P
=2

C
O

W
/S

M
P

,H
P

=2

S
M

P
,H

P
=4

C
O

W
,H

P
=4

C
O

W
/S

M
P

,H
P

=4

S
M

P
,H

P
=8

C
O

W
,H

P
=8

C
O

W
/S

M
P

,H
P

=8

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

�

Processing Time
Idle Time
Global Synchronization

�

9

Workshop on Performance Analysis and Its Impact on Design (PAID), June 1, 1997

time from the average increases as the number of tar-
gets per host decreases. This implies that increasing
the number of target nodes per host, i.e. a larger simu-
lation, with increasing host processors, will reduce the
idle time and achieve better speedups [8].

AlthoughWWT II does not achieve linear speedup,
parallel simulation is still worthwhile. This is because
such simulations are often memory-limited [26, 8].
Assume that (i) the goal is to maximize the rate at
which one can do simulations of alternative design
points, (ii) each simulation has a working set of Msim,
and (iii) the machine has a physical memory size of
Mphysical. To avoid thrashing, one can concurrently
run at mostS = ��Mphysical / Msim simulations. If the
system has more thanS host processors, parallel simu-
lation increases the rate of performing alternative sim-
ulations whenever speedup is greater than 1.0! This
combined with our speedups of 4.1-5.4 on (8 proces-
sors) makes parallel simulation worthwhile.

7 Conclusions

This paper examined four key operations that
underlie parallel, discrete-event, direct-execution sim-
ulation. These four operations are: calculation of tar-
get execution time, simulation of features of interest,
communication of target messages, and synchroniza-
tion of host processors.

We encapsulated portable implementations of these
four operations in two tools calledElsie andSynchro-
nized Active Messages. Using these tools, we easily
and successfully ported theWisconsin Wind TunnelII
(WWTII)—a parallel, discrete-event, direct-execu-
tion simulator—across a wide range of platforms,
including desktop workstations, a SUN Enterprise
server, a cluster of workstations, and a cluster of sym-
metric multiprocessing nodes.

On two benchmarks, we found that theWWT II
achieved both good performance and good scalability.
UniprocessorWWT II simulated one target cycle of a
32-node target machine in 114 and 166 host cycles
respectively for the two benchmarks on an UltraS-
PARC. Parallel WWTII achieved speedups between
4.1-5.4 on 8 host processors on a SUN Enterprise
E5000 server, a cluster of workstations, and a cluster
of symmetric multiprocessing nodes.

References
[1] Thomas Ball. Efficiently Counting Program Events with

Support for On-Line Queries.ACM Transactions on
Programming Languages and Systems, 16(5):1399–1410,
September 1994.

[2] NanetteJ. Boden, Danny Cohen, RobertE. Felderman,
Alan E. Kulawik, CharlesL. Seitz, JakovN. Seizovic, and
Wen-King Su. Myrinet: A Gigabit-per-Second Local Area

Network.IEEE Micro, 15(1):29–36, February 1995.

[3] Eric A. Brewer, ChrysanthosN Dellarocas, Adrian Colbrook,
and William Weihl. PROTEUS: A High-Performance
Parallel-Architecture Simulator. Technical Report MIT/LCS/
TR-516, MIT Laboratory for Computer Science, September
1991.

[4] Doug Burger and ToddM. Austin. The SimpleScalar Tool Set
Version 2.0. Technical Report 1342, Computer Sciences
Department, University of Wisconsin–Madison, May 1997.

[5] T. M. Conte and W.W. Hwu. Systematic Prototyping of
Superscalar Computer Architectures. InProceedings of the
3rd IEEE International Workshop on Rapid System
Prototyping, June 1992.

[6] R.C. Covington, S.Madala, V.Mehta, J.R. Jump, and J.B.
Sinclair. The Rice Parallel Processing Testbed. InProceedings
of the 1988 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 4–11, May 1988.

[7] Helen Davis, StephenR. Goldschmidt, and John Hennessy.
Multiprocessor Simulation and Tracing Using Tango. In
Proceedings of the 1991 International Conference on Parallel
Processing (Vol. II Software), pages II99–107, August 1991.

[8] Babak Falsafi and DavidA. Wood. Cost/Performance of a
Parallel Computer Simulator. InProceedings of the 8th
Workshop on Parallel and Distributed Simulation (PADS ’94),
July 1994.

[9] Babak Falsafi and DavidA. Wood. Reactive NUMA: A
Design for Unifying S-COMA and CC-NUMA. In
Proceedings of the 24th Annual International Symposium on
Computer Architecture, June 1997.

[10] Erik Hagersten, Ashley Saulsbury, and Anders Landin. Simple
COMA Node Implementations. InProceedings of the 27th
Hawaii International Conference on System Sciences, page?,
January 1994.

[11] Mark D. Hill, JamesR. Larus, and DavidA. Wood. Tempest:
A Substrate for Portable Parallel Programs. InCOMPCON
’95, pages 327–332, San Francisco, California, March 1995.
IEEE Computer Society.

[12] SunMicrosystems Inc.SPARC MBus Interface Specification,
April 1991.

[13] JamesR. Larus and Eric Schnarr. EEL: Machine-Independent
Executable Editing. InProceedings of the SIGPLAN ’95
Conference on Programming Language Design and
Implementation (PLDI), pages 291–300, June 1995.

[14] ShubhenduS. Mukherjee, Babak Falsafi, MarkD. Hill, and
DavidA. Wood. Coherent Network Interfaces for Fine-Grain
Communication. In Proceedings of the 23rd Annual
International Symposium on Computer Architecture, pages
247–258, May 1996.

[15] Vijay S. Pai, Parthasarathy Ranganathan, and SaritaV. Adve.
The Impact of Instruction-Level Parallelism on
Multiprocessor Performance and Simulation Methodology. In
Proceedings of the Third IEEE Symposium on High-
Performance Computer Architecture, 1997.

[16] StevenK. Reinhardt. Mechanisms for Distributed Shared

10

Workshop on Performance Analysis and Its Impact on Design (PAID), June 1, 1997

Memory. PhD thesis, Computer Sciences Department,
University of Wisconsin–Madison, December 1996.

[17] StevenK. Reinhardt, MarkD. Hill, JamesR. Larus, AlvinR.
Lebeck, JamesC. Lewis, and DavidA. Wood. The Wisconsin
Wind Tunnel: Virtual Prototyping of Parallel Computers. In
Proceedings of the 1993 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages 48–
60, May 1993.

[18] StevenK. Reinhardt, RobertW. Pfile, and DavidA. Wood.
Decoupled Hardware Support for Distributed Shared Memory.
In Proceedings of the 23rd Annual International Symposium
on Computer Architecture, May 1996.

[19] Eric Schnarr and JamesR. Larus. Instruction Scheduling and
Executable Editing. In29th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 29), pages 288–
297, December 1996.

[20] Ashok Singhal, David Broniarczyk, Fred Ceraukis, Jeff Price,
Leo Yuan, Chris Cheng, Drew Doblar, Steve Fosth, Nalini
Agarwal, Kenneth Harvey, Erik Hagersten, and Bjorn
Liencres. Gigaplane (TM): A High Performance Bus for Large
SMPs. InHot Interconnects IV, pages 41–52, 1996.

[21] Jeff.S. Steinman. SPEEDES: A Multiple-Synchronization
Environment for Parallel Discrete-Event Simulation.
International Journal in Computer Simulation, 2:251–286,
1992.

[22] Richard Uhlig, David Nagle, Trevor Mudge, and Stuart
Sechrest. Tapeworm II: A New Method for Measuring OS
Effects on Memory Architecture Performance. InProceedings
of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS VI), pages 132–144, October 1994.

[23] Thorsten von Eicken, DavidE. Culler, SethCopen Goldstein,
and KlausErik Schauser. Active Messages: a Mechanism for
Integrating Communication and Computation. InProceedings
of the 19th Annual International Symposium on Computer
Architecture, pages 256–266, May 1992.

[24] Emmett Witchel and Mendel Rosenblum. Embra: Fast and
Flexible Machine Simulation. InProceedings of the 1996
ACM Sigmetrics Conference on Measurement and Modeling
of Computer Systems, pages 68–79, 1996.

[25] StevenCameron Woo, Moriyoshi Ohara, Evan Torrie,
JaswinderPal Singh, and Anoop Gupta. The SPLASH-2
Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–36, July 1995.

[26] DavidA. Wood and MarkD. Hill. Cost-Effective Parallel
Computing.IEEE Computer, 28(2):69–72, February 1995.

