Workshop on Brformance Analysis and Its Impact on DesigAl(®, June 1, 1997

Wisconsin Whd Tunnel II:
A Fast and Portabledpallel Architecture Simulator

Shubhendu S. MukherjeeSteven K. Reinhardt Babak Rlsaff, Mike Litzkow", Steve Huss-Lederman
Mark D. Hill", James R. Larlsand Daid A. Wood'

*Computer Sciences Department
University of Wsconsin-Madison
1210 West Dayton Street
Madison, Wsconsin 53706-1685 USA
URL: http://www.cs.wisc.edu/~wwt
Email: wwt@cs.wisc.edu

Abstract

The design of futer parllel computes requires
rapid simulation of taget designs runningealistic
workloads. These simulations have been acatddr
using two tebniques: diect ecution and the use of a
parallel host. Historically these teeniques have been
consideed to have poor portabilityThis paper identi-
fies and describes the implementation of fayrdper-
ations necessary to maksut simulation portable
across a variety of pailel computes. These four
opemtions ae: calculation of taget execution time
simulation of featws of inteest, communication of
target messges, and syronization of host mces-
Sors.

Portable implementations of these four agérns
have allowed us to easily run thesédnsin WWhd Tun-
nel Il (WWT Il)—a paallel, discete-event, diect-ee-
cution simulator—aass a wide ange of platforms,
sudh as desktop workstations, a SUN Enterprise sgrver
a cluster of workstations, and a cluster of symmetric
multiprocessing nodes. é\plan to elease WWTI in
August, 1997. Walso plan to port WWT Il to the IBM
SP2.

We find that for two bemmnarks, WWT Il demon-
strates both good performance and good scalability
Uniprocessor WWT Il simulates oneger cycle of a 32-
node taget madine in 114 and 166 host cyclesspec-
tively for the two berionarks on a SUN UWSFARC.
Parallel WWT Il adieves speedups between 4.1-5.4 on 8
host pocessos in our thee paallel madine configua-
tions.
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1 Introduction

Software simulation is an important technique for
studying computer architectures ranging from micro-
processors [4, 5] to parallel computers [3, 17, 24].
Simulation speeds up design by enabling architects to
evaluate computers withouulding hardvare proto-
types. Havever, simulating big problems—parallel
machines with realistic @rkloads—requires lge
amounts of computation and memorfwo tech-
niques, directxecution and parallel simulation, neak
this approach feasible.

In direct execution [6], a program from the system
under study (thearget) runs on ansting system
(thehos). For example, a taget’s floating-point mul-
tiply executes as a floating-point multiply instruction
on the host. The host calculates thge#s execution
time and only simulates operations vaiéable on the
host.

Direct execution can run orders of magnitudster
than pure softare simulation (which interpretyery
target instruction). This approach can accurately cal-
culate the taget execution time for statically sched-
uled processors with blocking caches [6].wdeer,
computing the eecution time for dynamically sched-
uled processors with non-blocking caches is an open
problem [15].

Parallel simulation of a parallel computer further
speeds simulation byploiting the parallelism inher-
ent in the taget parallel computer and the parallel
hosts lage memory to hold the simulaterivorking

This work is supported in part by Wright Laboratoryiénics Directorate, Air rce Material Command, USAENnder grant #F33615-
94-1-1525 and ARR order no. B550, NSF Grants CCR-9101035, MIP-9225097, and MIPS-9625558, NSF PY MMiYdSACCR-
9157366, MIPS-8957278, and CCR-9357779, DOE Grant DE-FG02-93ER251vérdityiiof Wisconsin Graduate School Grantiséén-
sin Alumni Research dundation Fellership and donations from Digital Equipment Corporation, IBM, Sun Microsystems, Thinking
Machines Corporation, and Xerox Corporation. Our Thinking Machines Chs5pwrchased through NSF Institutional Infrastructure Grant
No. CDA-9024618 with matching funding from the Wairsity of Wisconsin Graduate School. The U.Sv&mment is authorized to repro-
duce and distrilte reprints for Geernmental purposes notwithstanding aopyright notation thereon. The wiss and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily represefitial fudicés or endorsements, either
expressed or implied, of the Wright Laboratoryi@nics Directorate or the U.S. @ernment.



Workshop on Brformance Analysis and Its Impact on DesigAl(®, June 1, 1997

set without paging. The adut of lav-cost parallel
computers, such as symmetric multiprocessors
(SMPs) and clusters of arkstations (C@/s), male
parallel simulation ery attractie.

Unfortunately parallel, discretexent, direct-ge-
cution simulators are compi@ieces of softare that
can be dificult to kuild and port. Portability is a desir-

able goal because of the wide range of processor

architectures and parallel computers. In part, parallel,
discrete-gent, direct-gecution simulators are not
portable because thaely on machine-specific fea-
tures. Direct-gecution simulators are tied to specific
instruction sets by the need to modifygetr executa-
bles or assembly code to calculate ge#s execution
time and simulate missing features. Some simulators
[17, 22] also modify the operating system to detect
target cache misses. Similarlyarallel simulators
often use machine-specific synchronization and com-
munication features to achie good parallel perfor-
mance.

As the authors and users ofo\generations of par-
allel direct-execution simulators, we are painfully
aware of these lo-level dependencies. Inubiding
our tools, we hee identified four ky operations that
underlie parallel, discreterent, direct-gecution sim-
ulation:

* calculation of taget execution time,

* simulation of features of interest,

e communication of tajet messages, and
* synchronization of host processors.

The main contribtion of this vork is to identify
and implement these four operations iraghion that
minimizes the dependence of a parallel simulator on
host-specific features. Secti@nexamines alternate
implementations of these four operations. Sedion
and Sectio® describe tw tools, calledElsie and
Syntironized Active Mesgas (SAM}hat encapsulate
these operations in a portableywElsie is an editor
that modifies wecutables to calculate tgat execution
time and simulate a parallel compusememory sys-
tem.SAMis a messaging library that supports parallel
simulation.

Using Elsie and SAM we ported théMsconsin
Wind Tunnelll (WWTII)—the successor to the origi-
nal Wisconsin Whd Tunnel (WWT)[17]—to a wide
range of platforms, including desktomskstations, a
SUN Enterprise seer, and a Cluster of SIRCsta-
tions. We are also portingVWTII to the IBM SP2.
We find thatWWT Il shavs excellent to modest per-
formance on our diérent platforms (Sectiob and
Section6). In Sectior7 we present our conclusions.

We plan to releas®/WTII in August, 1997. The
exact release date and additional information about

WWTIl will be available from the URL:http://
www.cs.wisc.edu/~wwt/wwt2/.

2 Operations

In this section we discuss alternatimplementa-
tions of four key operations that underlie parallel, dis-
crete-@ent, direct-gecution simulation. These
operations help isolate host-specific features, which
makes it easy to port and tune the performance of a
parallel simulatarThe first tvo operations—calcula-
tion of taget execution time (Sectiof.1) and simula-
tion of features of interest (Secti@)—relate to
direct ecution, while the last ts=—communication
of tamget messages (Secti@rB) and synchronization
of host processors (Secti@m)—relate to quanta-
based, parallel, discreteent simulation.

2.1 Calculation of Target Execution Time

Simulation is generally uninteresting without a tar-
get's eecution time. In pure softwe simulation,
which interprets eery taget instruction, calculating a
talget's eecution time is simple. The simulator
updates a clockariable after simulating each gt
instruction. Unfortunatelyreturning control to the
simulator after eery instruction defeats the purpose
of direct eecution. This is because directeeution
speeds simulation by directlxexuting blocks of tar-
get instructions on host hardve without ap simula-
tor intenention. Consequentlyjumping into the
simulator after eery instruction to update the ¢gat
clock can bexpensve for direct &ecution.

The cost of updating a tget clock \ariable can be
reduced in tw ways. First, instead of updating the tar-
get clock after eery instruction, we can update it at
edges of basic blocks in a routimetontrol flav-
graph. Ball [1] sheved hav to optimize this by updat-
ing a countersuch as the tget clock, only on a sub-
set of edges. Second, instead of jumping into the
simulator the taget itself can maintain and update its
own taget clock wariable. This implies that the tgat
code must be augmented witktra code that updates
the taget clock. V¢ call this taget clock instrumenta-
tion.

Tamget clock instrumentation can be done at four
levels: source code [6], assembly code [3, 7], object
code, and xecutable [17]. Unfortunatelythe first
three approaches require source, assenablpbject
code, which may be hard to obtain fagndorpro-
vided libraries or commercial operating systems and
databases. MExutable modification remes this
restriction. Hovever, executable modification intro-
duces tw problems. First, it is comptdo implement
because thexecutable editor must handle machine-
specific details (e.g., fix branch addresses after the
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introduction of taget clock instrumentation code). check the tayet cache state, unbkheWWTapproach
Second, lik assembly or object code modification, in which the simulator cheekl the taget cache block
executable modification maks the simulator depen-  state only on tgret cache misses.

dent on a specific instruction set. Consequeadicu- Replacing instructions with me code sgments
lating the taget e&ecution time via xecutable introduces problems similar to thosecéd by taget
modification has been considered ted@oor porta- clock instrumentation. Hence, our solution is similar
bility. We augmentElsie (Section3) to replace taet
Fortunately researchers ka recently deeloped instructions to simulate features missing in the host.
executable editing tools that allousers to treerse In our case, this feature is theger memory system.

the control-flev graph of a tayet &ecutable and .
introduce foreign code in an almost machine-indepen- 2.3 Communication of Brget Messages
dent fishion. These tools relie the writers of ecut-
able editors from wrrying about lav-level machine-
specific details. In Sectid®y we shav how we used
one such tool, called EEL [13], taild an executable
editor, calledElsig to perform the tayet clock instru-
mentation on tayet xecutables.

Communication is inherent in parallel simulation
because tget nodes xchange messages with one
another However, the natve communication support
differs radically across parallel computers. Mealyi
Parallel Processors (MPPs) are programmed with
explicit message-passing, @@ with soclets, and
2.2 Simulation of Features of Interest SMPs with shared memorgZonsequentlythe com-

munication code written for one machine cannot be

Researchers uild simulators to study proposed easily ported to another machineo @ercome this
parallel architectures. Hence, simulators mustwallo problem, we hee deeloped a simple messaging
researchers to simulatewdeatures, which may or library called Syntironized Active Mesgas (SAM)
may not be currentlyvailable in a parallel host.oF which abstractsveay the communication primigs
example WWTsimulated a hardare, cache-coherent, from the mechanisms and techniques used in imple-
shared-memory machine on the TMC CM-5, which is mentation. This als us to easily porEAM across
a message-passing parallel machine. different parallel computers.

In direct xecution, to simulate features missing in
a host, the tget often needs the ability to jump into

the simulator_ on specific @&t instructions. & Parallel, discretexent simulation (PDES) that
example, to simulate the get memory system, the  seq the conseamtive time hucket synchronization
target must transfer control to the simulator oryédr method [21] must rapidly synchronize host proces-
loads and stores. _ sors. In this method, t@get execution is brokn up into

Researchers kia used tw approaches to simulate  |ock-step interals called quanta (Figutd. Target
features missing in the host. The first approach usesmessages sent during one gquantum can ofegtafir-
hardware and softare mechanismsvailable in the get state in subsequent quanta.

host to simulate specific get features. & example, Quanta-based PDES imposes three synchronization
WWT and Tapevormll [22] marked host memory  qqirements. First, host processors must be able to

blocks that are absent in theger cache or TLB with determine that a quantum hagied, and thus syn-
bad ECC. Accesses to memory blocks ywth bad I_ECC chronize with the taet node. Second, when a quan-
generated traps that werectored to the simulator via expires, host processors must synchronize among

the operating system. This alled WWT and themseles using a barrier and calculate the duration

Tapavormll to simulate cache and TLB miSses, ot the ngt quantum interal. The duration of the me
respectiely. Unfortunately this method is not easily — quantum interal is often calculated as the sum of the

portable because it requires operating system modifi- minimum taget execution time across all host proces-
cation to catch the ECC traps. Additionaliyost sors (comentionally called a reduction) and aeik
dynammally—sche(_juled processors are whliko sup- guantum length (e.g., 100 ¢mt processorycles).

port precise xceptions on ECC errowithout precise  Thjrg host processors must ensure that all messages
exceptions, a simulator will not be able to correctly ¢ontin a quantum are reeedl and processed before
simulate taget cache misses. , the bginning of the net quantum. This alles a host

_ The second approach is to replaceeannstruc-  processor to schedule reception of aljéarmessages
tions with code sgments that transfer control to the ¢ the bginning of a quantum. The folling three

simulator This approach is more general than the pre- paragraphs discuss each of these three synchroniza-
vious approach. Heever, this method can pay a per-  tjon requirements.

formance penalty for its generalitifor example, to
simulate taget cache misses, all loads and stores must

2.4 Synchpnization of Host Processors
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FIGURE 1. This figure shavs hav quanta-based PDES
simulates a parallel taget machine. Each hos
processor diectly executes taget instructions and
simulates tamget events (processing time), enters an idl
phase in which it spins ér the global synchionization to
begin, and then esumes execution after th
synchronization.

There are tw ways to determine if a quantum has
expired. First, the simulator can check quantwpi-e
ration on specific entry points into the simulaffinis
approach is ery eficient if the taget frequently
returns control to the simulator (e.g., ovesy load
and store) WWTII uses this approach. Wever, this
approach can hurt performance if simulated features
do not recur frequentlyThis is because @@t nodes
may not synchronize frequently enough, and conse-
guently taiget nodes witing for messages from other
target nodes may not makprogress. Second, we can
modify a taget eecutable to check the progress of
tamget execution time at specific points (e.g, ongttr
clock updates) and jump into the simulator if a quan-
tum has epired. This is a more roist method, bt
introduces additionalwverhead compared to the first
method.

Different parallel computers pride different
degrees of hardare support for barrier synchroniza-
tion and reductions. df example, the TMC CM-5
supports both hardave barriers and haréwe reduc-
tions, while the Cray T3E supports only haedesbar-
riers. In contrast, the SUN Enterprise E5000 or a
COW connected with Myricom Myrinet switches
have no hardware support for either; hence, these
machines must implement both in scdre. Lack of
hardware support for barriers and reductions can

degrade the performance of quanta-based PDES, par-

ticularly when the quantum inteals are short.

Target Source Code
Standard C Compiler

Tamet BExecutable

iElsie
Instrumented drget Executable

Wisconsin Vihd Tunnel Il

¢— Host
(WWT 11)

Configuration

Target output
Target execution time
WWT llstatistics

FIGURE 2. This figure shavs hav Elsie is related tc
WWT 1.

Most parallel computers do not pide hardvare
support to determine if all messages injected into a
host netwrk have been drained (the TMC CM-5 is a
notable &ception). Havever, there are aariety of
ways of doing this in softare. lor example, we can
collect acknwledgments for wery message injected
into the netwrk. Alternatvely, we canpiggybad all
messages ver a softvare barrier (e.g., our G@®
implementation of synchronization and communica-
tion described in Sectiof), which would guarantee
message reception before thegibaing of a nw
quantum.

3 Elsie

Elsie modifies taget eecutables that run on
WWTII (Figure2) to achiee the calculation of tget
execution time and simulate features of interesteLik
other eecutable editors for directecution simula-
tors [24, 17],Elsie adds instrumentation to calculate
the taget's execution time and to simulate thegat's
memory system. Surprisingllsie can be written in
an almost machine-independeastiion for three rea-
sons. FirstElsie uses the EEL x®cutable editing
library [13], which hides most details of modifying
executables. EEL prades operations thdflsie uses
to traverse a tayet eecutables control-flav graph
and to addcode snippetsSnippets contain machine-
specific instructions, whicklsie adds to edges in a
control-flov graph to track the tget's execution time.
Elsie also replaces tget memory instructions (e.g.,
loads and stores) with snippets that jump into the sim-
ulator, which simulates the tget memory system.
Second, there are vie machine-dependent snippets
and thg are small. The eight mandatory snippets all
contain four or fever instructions each. Consequently
only small portions of machine-specific code must be
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rewritten to portElsie to a diferent instruction set.
Finally, EEL itself runs on diérent instruction-set < -
architectures, such as theART and the IBM RS/ o X >~ 7

6000. Hence, portinglsie from a SRRC to an IBM .§¢ 7~ T
RS/6000 only requires witing machine-dependent — - —
snippets. ms

The introduction of code snippets toger executa- FIGURE 3. SAM implementation for a COW. PO, P1, P2,

bles incurs only a modest increase in the size of the and P3 denote host pocessors. Dark boxeseapresent data -

tamget executables text sgyment. The instrumentation ~ here only PO sends a message. Solid linespresent the flov
of synchronization messages with data (piggybacking

overhead (measured in number of instructions added pogted fines represent flv of synchronization message:
statically) for taget eecution time and memory  without data.

instruction simulation are 68% and 70% respetyj messages and synchronization of host processors in

averaged across our tgat benchmarks @ble2). This the simulatar

is comparable to the instrumentatiovethead intro- SAM by design, is ery simple so that it can be

duced by MIT Proteus [3] or Stanford Embra [24]. implemented easily across a wide range of parallel
In practice Elsiés instrumentation w@erhead in machines. SAM provides three main primites:

terms of actual>ecution time can beven lover for SAM_Send_MsgSAM_Bcast_Msgand SAM_Sync

two reasons. First, the instrumentatioveiead is Host processors communicate ~  using

perfectly parallelizable, becausssie does not add  saAM_Send_Msg, calculate the xtequantum dura-
extra instrumentation code for parallel simulation. tion using SAM_Bcast_Msg (that is, via broadcast
Second, EEL can hide instrumentatiovehead by ~ messages), and synchronize using SAM_Synce Lik
scheduling instrumentation instructions in idle super- Active Messages [23], BAMmessage contains a vir-

scalar &ecution slots [19]. _ _ tual address of a handler that will be called at the

The introduction of instrumentation code to jump receiing host processoHowever, unlike actve mes-
into the simulator to simulatesery memory instruc-  sages,SAM does not guarantee message reception
tion increaseSWVWTII's overhead compared WWT untii SAM_Sync completes. When SAM_Sync
or Tapevormll. WWT and Tapevormll have low returns,SAM guarantees that all messagesehbeen

overhead because thedirectly eecute memory  receired and processed (so that messagee haen
instructions that hit in the tget cache (see  scheduled for the mequantum) by calling the corre-
Section2.2). WWTII reduces this verhead by pro-  sponding handlersSAM calculates the & quantum
viding a fast path for loads and stores that hit in the duration via message broadcasts for simplicityd
target cache. Normallyon a load or store, the simula-  thereby soids a separate reduction inasé, such as
tor translates the virtual address to theysital the one in the TMC CM-5.

address using the get TLB, indees into the cache, Currently SAMruns on three platforms: an SMP
finds the appropriate cache block through a tag match, cjyster of Verkstations (C®/), and a Cluster of
checks the state of the cache block, and, on a cachegpps (cav/iSMP). Each implementation is opti-
hit, loads or stores aiue from or to the cache block.  mized to the platforns' underlying communication
Instead, in thedst pathWWTII maintains pointersto  gypstrate.

all valid taget cache blocks in eachdat TLB entry The SAM SMP implementation is straightfoand
Thus, if a load or store hits in the gat cache,  pecause our SMP (SUN E5000) supporticieht
WWTII can directly find the block on a gat TLB low-latenyy communication ver the memory Ws.
access. Theabt path optimization speeds WVTII SAMallocates a shared-memongseent and for each

by 8% (aeraged across our g&t benchmarks) on a  yrocess in the parallel progra@AMsets up tw sets
SUN Enterprise ES000 machine running a 32-node ot majlhoses in shared memory—destination mail-

taget on a uniprocessor host. All our results p,yes and source mailbes. A process’ destination

(Section6) assume this last optimization. mailbox is used by another process to send a point-to-
. . point message to this process. Each messagplis-e
4 Synchionized Active Messages (SAM) itly copied into the destination mailbox because tw

process’ only share thegment containing the mail-
boxes and not the entire address spbtigtual exclu-

sion of destination mailbox is ensured through an
atomic fetch-and-add operation. A process uses its
own source mailbox to enqueue broadcast messages.
We do not enqueue a broadcast message in the desti-
nation mailbors because thatowld create multiple

Syntironized Active Mesgas (SAM)provides an
architecture-neutral programming model that unifies a
parallel hoss communication and synchronization
operations for a quanta-based, parallel, discretete
simulation. This achies the communication of tzat
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Parallel Host Inter-Host

Machine | Processof Communication
Memory | Network
Bus

SMP 167 MHz (83.5 N/A

(8-proces-|UltraS-  [MHz,

sor PARC 256-bit

SUN wide

E5000)

cow 67 MHz |50 MHz, | Myri-

(unipro-  |Hyper- 64-bits com

cessor SFRARC |wide Myrinet

SFRARC- switches|

sener20)

cow/ 67 MHz |50 MHz, | Myri- 4 | 8

SMP Hyper- 64-bits com

(dual-pro- |[SFARC  |wide Myrinet

cessor switches

SFARC-

sener20)

TABLE 1. This table shovs the experimenta

configuration for our parallel machines. N = number o
nodes and P = total number of host prcessors in eac
machine. Each node of our C®/ is equipped with two
processors. Haever, for the COW runs we only use
one processorwhereas br the COW/SMP runs we use
both the processors in a C&/ node.

copies of the same message. Finalljlen a process
calls SAM_SyncSAMdrains a processwn destina-
tion mailboxes and checks all other process’ source
mailboxes for broadcast messages. Subsequently
SAM calls the handlers corresponding to each mes-
sage and returns control to the simulator

The CQV implementation ofSAM is more com-
plex. Analysis of the C®/'s communication charac-
teristics rgeals that minimizing lateycand number
of messages areety important WWTII sends fe
messages (twor less, per processor) that are small
(80 or faver bytes) in a quantum.

The standard model of the latgno send a mes-
sage from one process to another on th&\d©

end-to-end message latgrea + 3 * b,
whered is the message latgnfor a zero-length mes-
sage, is the incremental cost per byte, and b is the
number of bytes in a messagee \se the Berdey
Active Messages as the maticommunication layer
on the CQV. For this messaging layen is 26 usecs
andf is 0.071usecs/byte, and the ratio afto B is
366 bytes. This shwes that communication lateypof
short messages is dominateddyywhich means that
we should minimize the number of messages. The
higha to  ratio means that a modest increase in mes-

Target Description Input Data Set
Benchmark
FFT Performs Bst fou- |Points = 29
rier Transform
Radix Performs intger Keys = 256K
radix sort Max Key = 512K
Radix = 1K

TABLE 2. This table shavs the target benchmarks anc
the corresponding input data sets we usedorf our
experiments.

sage size does not significantlyfeat message
lateng.

Taking these characteristics into account, we
implement SAM_Sync through a sofive ltterfly-
style messagexehange pattern. The number of stages
is logarithmic in the number of processors, thereby
reducing the number of messages on the critical path.
We further reduce the number of messagepiggy-
bading the taget messages from the current quantum
and the data needed to determine the geantum
length on the btterfly synchronization. ASVWTII
sends ery fav short messages in each quantum, the
total cost of the Wtterfly is not substantially increased
over the synchronization cosyen though our piggy-
backing scheme sends all data to all host processors
(Figure3).

The CQON/SMP implementation combines the
COW and SMP implementations. The host processors
within an SMP first echange their messages. Then
one pre-designated host processor in each SMP node
exchanges messages with other host processors fol-
lowing the same piggybael hutterfly as shan in
Figure3. Finally, host processors within an SMP syn-
chronize locally to ensure that the pre-designated pro-
cessor has drained all messages from theanktw

5 Methodology

This section describes ouxperimental frame-
work, WWTII, and the tayet architecture and bench-
marks we use for this studyablel shavs our three
different parallel machine configurations. Our SMP is
a SUN E5000 machine with eight 167 MHz UltraS-
PARC processors connected with a split-transaction
memory lus called the UltraGaplane [20]. The
COW nodes hee 67 MHz HyperSRRC processors
and are connected with Myricom Myrinet switches
[2]. The CON/SMP is the same as the @ODexcept
that each node has awprocessors, instead of one.
Each CQV node has a 50 MHz in-order memornysb
called the MBus [12]. W use 8 C®/ nodes and 4
dual-processor CU/SMP nodes to equalize the num-
ber of host processors in the @Oand CQV/SMP
configurations.
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Differences WWT WWT I
Host Plat- TMC CM-5 | Workstation, SMPCOW,
forms COW/SMP
Tamget CC-NUMA, S-COMA,
Architec- software DSM, SMPand
tures CC-NUMA | Tempest (actie messages
and shared memory)[1&
Memory Contention- | Detailed simulation of a
Bus free coherent memoryus
Optional Net-| Network is not modeled
Network work Simula- | but network contention is
tion modeled at the netwk
interfaces
Source C C++ (primarily)
Language
Number of
non-blank,
non-com- ~16,000 ~30,000
ment lines
of simula-
tor source
code

TABLE 3. This table shawvs the difference betwee
WWT and WWT II. CC-NUMA Cache-Coheent
Non-Uniform Memory Ar chitecture. COMA = Cache:
Only Memory Architecture. DSM Distributed
Shared Memory. SMP = Symmetric Multiprocessol
The lines of souce code eported abose does no
include the lines of souce code ér the executable
editors, SAM, or the target benchmark.

a. A subset of these taat architectures will be
made &ailable in the final distriltion of WWT IL

WWTII is the successor t®&WWT but is more
detailed and fteble compared tWWT Table3 lists
the diferences betweeWWTIlI andWWT We hare
already usedVWTII for several research #drts [9,
14, 18, 16].

For this studywe hae chosen a 32-node S-COMA
[10] shared-memory machine as ourgdrarchitec-
ture. Each tayet node has a single processor and a
256 kilobyte processor cache. Haate coherence is
implemented through a full-map directory protocol.
Each host processor WWTII simulates one or more
target nodes. & example, for a 32-node @et, an 8-
processorWWTII configuration simulates 4-tzat
nodes per host processor

Table2 shavs the two taiget benchmarks and cor-
responding input data sets we used for our stBdth
FFT and Radix are SPLASH2 applications [25].

In all our measurements in Sect®mve report the
time it took WWTII to execute only the parallel por-

Bench-| Number | K Slowdown
mark of Host SMP COW Ccow/
Proces- SMP
sors
1 32 166 241 241
2 16 95 159 170
FFT
4 8 54 65 117
8 4 36 45 47
1 32 114 186 186
) 2 16 66 103 139
Radix

4 8 39 55 80
8 4 25 37 46

TABLE 4. This table shavs WWT |I’'s slavdown. K =
number of target nodes simulated per host mrcessor
For all the above measuements, the taget size is
constant, i.e. 32 nodes (second column * third column

tion of each taget benchmark. Wassume SHRC V8
instruction set for our tget benchmarks so all of our
host processors are AIRC V8 compatible. Addition-
ally, sinceWWTII takes the same path through the
talget executable, all our tget executable runs report
exactly the same tget eecution gcles, irrespectie
of which of our three platforms ran thgperiments.
WWTII takes the same path through theeeutable
because we impose a strict ordering wérgs. This
control oser the &perimental frameork is essential
to efectively characterizeWWTII's performance
across our three platforms.

6 Performance Results

This section described/WTIl's performance and
scalability on our three parallel machines @harac-
terize WWT IIs performance using a metric called
slowdown We define slevdown as follavs:

slowdann = Max; [host (ycles]’

Z; [target g/cles]
i =1 ... number of host processor:
j =1 ... number of tget nodes

Thus, slevdown is the rate at which a host simulates
taiget node ycles (able4).

On our SMP WWTIl's slavdown is modest
(between 25-166), while on the @0and CQV/SMP,
WWTII’s slavdown is slightly worse (between 37-
241) compared to the SMPn the SMPWWTII’'s
slovdown is comparable to MIT Proteus’ sidown
(between 35-100 on a uniprocessor host) [3JwHo
ever, such comparison of sl@own between dierent
simulators may not be insightful becausewslovn
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depends on the functionality andrdé of detail sup-
ported by a simulator

Figure4 provides further insight intoWWTII's
scalability It shavs the breakdsn of the aerage
processing time, idle time, and global synchronization
time, as vas done qualitately in Figurel. The pro-
cessing time is the sum of threeution time for all
target processes. The idle time representsabethat
processing time is not uniformly distuted. Thus, it
is the number of host processors multiplied by the
critical path processing time minus the processing
time. The critical path processing time is the sum of
the maximum processing time across hosts for each
guantum. Measuring the global synchronization time
is more dificult. This occurs because the synchroni-
zation at the end of each quantum does not imply that
all host processors lea SAM at the same time. An
efficient software implementation of a barrier (syn-
chronization) is unlikly to cause all processors to
complete the barrier simultaneouslyrhe only
requirement is that no processed entil all proces-
sors hae entered the barrie€onsequentlyan actual
machine does not f1a the nice clean picture skio in
Figurel. The easiest ay to overcome these issues is
to define the synchronization time to be théetlédnce
between the total time and the critical path processing
time. This works since the measured processing times
are not dected by the ariation in barrier %t times.
This is hav the results presented here were calculated.

Figure4 shavs three interesting characteristics of
WWT Il First, WWTIIl scales similarly for the SMP
and the CQ. However, CON/SMP scales (and per-
forms) slightly worse than the C@ for the same
number of host processors. This is because the pro-
cessing time on the G&YSMP is worse than that on a
COW. We suspect this dd#rence is caused by our
COW/SMP nodes memory systemwhich does not
scale as well with increasing processors due to the
particular memory s used within one node.

Second, the global synchronization time is a small
fraction of the total xeecution time (between 4-17%).
This implies that our implementation of SAM and the
synchronization layer is quite fefent. Further
improvements in the synchronization layer can
improve performance only mainally.

Third, with increasing host processors, the idle
time introduced due to load imbalance within a quan-
tum is a dominantaictor of the total xeecution time.
This idle time appears to be theyKimiting factor to
WWTII’s scalability For example, on 8 host proces-
sors, the idle time accounts for 33-46% of the total
execution time. ConsequentifyVWTIl achiees a
speedup of 4.1-5.4 on 8 host processors, which is
good, lut less than linea¥\e believe that the idle time
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FIGURE 4. This figure shavs hov WWT I1’'s scalesdr
FFT (a) and Radix (b) on our three parallel machines
HP denotes the number of host prcessors in eac
configuration. The \ertical axis shavs the total
execution time br a particular configuration divided
by the total execution time on one host mrcessor of the
corresponding machine. On a single host pcessor
WWT Il runs on average 3.8 times faster on the SM
compared to the CON. The CON/SMP execution time
on a single host is identical to that of the C@. Each
execution time bar is further divided up into average
processing, idle, and global syncbnization times. The
global synchmonization time on a single host denote
the overhead of switching to a diffeent target node,
while that on multiple host processors denote both th
overhead of switching taiget nodes and synctonizing
with other host processors.

have a fixed number of total tget nodes. This

increases with increasing host processors because weNcrease occurs because theiggon of processing
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time from the gerage increases as the number of tar-

gets per host decreases. This implies that increasings

the number of tgfet nodes per host, i.e. agar simu-
lation, with increasing host processors, will reduce the
idle time and achie better speedups [8].
AlthoughWWT Ildoes not achie linear speedup,
parallel simulation is still wrthwhile. This is because
such simulations are often memory-limited [26, 8].
Assume that (i) the goal is to maximize the rate at
which one can do simulations of altermatidesign
points, (ii) each simulation has awking set of M;,
and (iii) the machine has a y#ical memory size of
Mphysicat TO aoid thrashing, one can concurrently
run at mostS = My sical/ MsimlIsimulations. If the
system has more th&host processors, parallel simu-
lation increases the rate of performing alteneasim-
ulations wheneer speedup is greater than 1.0! This
combined with our speedups of 4.1-5.4 on (8 proces-
sors) maks parallel simulation @rthwhile.

7 Conclusions

This paper wamined four ky operations that
underlie parallel, discreterent, direct-gecution sim-
ulation. These four operations are: calculation of tar-
get ecution time, simulation of features of interest,
communication of tgyet messages, and synchroniza-
tion of host processors.

We encapsulated portable implementations of these
four operations in ter tools callecElsie andSyndiro-
nized Active Mesgs Using these tools, we easily
and successfully ported thdsconsin Vihd Tunnelll
(WWTIl)—a parallel, discretevent, direct-gecu-
tion simulator—across a wide range of platforms,
including desktop wrkstations, a SUN Enterprise
sener, a cluster of wrkstations, and a cluster of sym-
metric multiprocessing nodes.

On two benchmarks, we found that tNeWT Il
achieved both good performance and good scalability
UniprocessoMVWT Il simulated one tget g/cle of a
32-node taget machine in 114 and 166 hogtles
respectrely for the tvo benchmarks on an UltraS-
PARC. PRarallel WWTII achieved speedups between
4.1-5.4 on 8 host processors on a SUN Enterprise
E5000 serer, a cluster of wrkstations, and a cluster
of symmetric multiprocessing nodes.
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