To appearSIGPLAN Confance on Rsgramming Language Design and Implementation (PLRIpe 1995.

EEL: Machine-Independent Executable Editing

James R. Larus and Eric Schnarr

Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton St.
Madison, WI 53706 USA
{larus,schnarr}@cs.wisc.edu

Abstract executable (compiled) code by removing existing instruc-

EEL (Executable Editing Library) is a library for building tions and addindoreign codethat observes or modifies a
tools to analyze and modify an executable (compiledd pr programs execution. It is an fefctive technique for measur-
gram. The systems and languages communities have built"d and modifying program behavior since executables hold
many tools for ewr detection, fault isolation, ahitectue an entire program (including librariéspnd editing them
translation, performance measment, simulation, and does not require source code or modification to system tools
optimization using this appach of modifying executables. Such as compilers and linkers.

Currently, howevertools of this sort a difficult and time- Executable editing is widely used for three purposes:
consuming to write and arusually closely tied to a particu- emulation, observation, and optimization. An edited execut-
lar machine and operating system. EEL supports a able can emulate features that hardware does not provide.
machine- and system-independent editing model thatFor example, the Wconsin Whd Tunnel architecture simu-
enables tool builders to modify an executable without beinglator [19] drives a distributed, discrete-event simulation of a

aware of the details of the underlyingchitectue or oper- parallel computer from the logical cycle times of processors

ating system or being concerned with the consequences oflirectly executing a parallel program. The underlying hard-

deleting instructions or adding feign code. ware (a SRRC processor in a Thinking Machines CM-5)
does not provide a cycle counter or aficafnt mechanism

1 Introduction for interleaving computation and simulation. Thenw/

Tunnel system edits programs so that they update a cycle
A program executable holds instructions and data for atimer and return control at timer expirations. Similadyge

compiled program. In most situations, executables areversion of the Blizzard distributed shared-memory system
atomic entities that are created, used (executed), and disf20] edits programs to insert fine-grain access tests before
carded. Sometimes, howeyéris convenient or necessary shared loads and stores. These tests permit data sharing at
to look inside one of these entities and observe, measure, ofache-block granularitywhich reduces the false sharing
modify a prograns behaviar Executable editingchanges incurred by page-granularity distributed shared-memory
This work is supported in part byright Laboratory Aionics Directorate, systems. Another emulation is software fault isolation

Air Force Material Command, USAEnder grant #733615-94-1-1525 and ~ (Sandboxing) [27], which implements protection domains

ARPS tde 10, D550, N \YIukid CCR9397779 NSF Crats by moriying cole 0 prevent i fom referencing or trans-
- an - , rant DE- - ,an - . : L -
donations from Digital Equipment Corporation and Sun Microsystems. ferring control out of its dom?—'n'_ In the. limit, ed't'ng can
The U.S. Government is authorized to reproduce and distribute reprints forreplace an entire program with instructions for dedént
Governmental purposes notwithstanding any copyright notation thereon. grchitecture. Tanslation is used both to migrate Iegacy code

The views and conclusions contained herein are those of the authors an .
should not be interpreted as necessarily representingfitialgiolicies or ijo new architectures (e.g.affidem [2] and XX [21]) and to

endorsements, either expressed or implied, of thightLaboratory Ai- run binaries on other systems [12].

onics Directorate or the U.S. Government.
Technology trends are increasing opportunities for edit-

ing executables. Machines, both sequential and parallel, are
built almost exclusively from commodity microprocessors,
which offer instructions and memory systemgytged at a

1. This process can also be performed on components of an executable
(object files). Howeverr patent obtained by Pure Software precludes many
uses of object-file modification [17].

mass market that has no need for semantically-rich protec-in two major ways: it can edit fully-linked executables, not
tion or memory models. Although its performance is lower just object files, and it emphasizes portability across a wide
than hardwarg, executable editing enables research by range of systems.

allowing new ideas, such as sandboxing or-lesezl shared Both aspects require new algorithms, which this paper
memory [19], to be demonstrated on existing processorsdescribes. The first part describes EEinachine-indepen-
and tested on real applications. Editing can also solve pracent abstractions and the analysis underlying them. The sec-
tical problems raised by new architectures. For example, ond part describes how EEL is parameterized to be ported

good performance on highly-parallel superscalar or VLIW easily to new systems. The third part describes some mea-
processors requires instruction scheduling tuned for a par-syrements and applications of EEL.

ticular implementation. Rescheduling an executable (by

editing) ofers an attractive alternative to purchasing, dis- 2 Related Work

tributing, managing, and updating binaries. Finadigiting

offers a solution to the instruction-set compatibility issues as the introduction relates, many tools modify executa-
[12] that have hindered widespread acceptance of RISCpjes to perform a wide range of tasks. Howgwermost
processors, despite their cosfeefive performance. Binary tqols, the application and executable modification are inter-
translation provides machines with the operations necessaryyined and details of the latter have not been published.

to run the vast amount of software for Intel processors. An exception is Srivastava andails OM system [25]
Another use of executable editing is program observa- \hich is a library similar to EEL, for modifying object

tion. Profiling and tracing tools, such as MIBBixie [22] files. OM internally represents instructions aELRwhich
or gpt [4], edit executables to record execution frequencies can pe manipulated and translated back into machine
or trace memory references. These toolssdely used 10 jnstryctions. OMS RTL and EELs instructions serve the

study program or system behavior (e.g., [6,8]) and computergame roles. OM, howevaises relocation information from
architecture (e.g., [51129]). More recentlya tool based on gpact files to analyze a progrartontrol structure and to
EEL, Active Memory [16], dramatically lowered the cost of yejocate the edited code. EEL, by contrast, directly analyzes
cache simulation—to a 2-7x slowdown—Dby inserting ang modifies a prograsvinstructions, and consequently
cache-miss tests before a progmmmemory references can operate on programs without relocation information,
rather than post-processing an address trace. In additiong,cp as fully compiled and linked programhis facility

software development tpols, such as Pure Softe/Bneify comes at a price, as EEL requires more sophisticated pro-
[13], detect programming errors, such as out-of-bounds gram analysis and occasionally falls back on run-time code
memory references or memory leaks. when static analysis is indigient. However this analysis

Finally, executable editing has also been used for global also permits EEL to provide common functionality across
register allocation and program optimization [24,25]. vastly diferent systems.

Unlike most compilers, which operate on a single file, edit- | 51,5 and Ball [15] described the ad-hoc analysis used
ing can manipulate an entire program, which permits it t0 y theijr profiling and tracing toajpt to instrument execut-
perform interprocedural analysis rather than stopping at gpje files. EEL extends the earlier work by providing a gen-
procedure boundaries. eral library for manipulating executables that is not tied to a
Executable editing is conceptually eabyt complex in specific application. EEL also shows that many problems

practice because of a myriad of architectural and system-raised in the earlier paper can be handled with more power-
specific details [15]. This complexity reduces the attractive- fy| program analysis.

ness of the technique by increasing the time afortef ATOM [23] is a system that provides a simple interface
required to produce a robust tool. Ad-hoc systems arety oM for adding instrumentation to programslOM'’s

unlikely to employ reliable, general analyses forficlft interface is highetevel and more concise than EEL(or
constructs, such as indirect jumps. Morepwdifierences gy which simplifies writing tools, but provides less

among machines and operating systems lead to t00Is thaf,hro| gver the instrumentation process. For example,

are closely tied to one or two platforms and which affe- dif AToM does not permit existing instructions to be modfied
cult to port to other systems. and invokes foreign code through a function callOM'’s

EEL (Executable Editing Libraryls a new C++ library principle advantage is that foreign code can be written
that hides much of the complexity and system-specific entirely in a high-level language. Figureontains the EEL
detail of editing executables. EEL provides abstractions thatcode to imp]ement the same branch_counting app]ication as

allow a tool to analyze and modify executable programs discussed by Srivastava and Eustace [23]. The code for the
without being concerned with particular instruction sets,
executable file formats, or consequences of deleting exist-1: In the near future, EEL will supplement and verify its analysis with
. relocation information, when available, and will modify this information,
ing code and adding foreign code. EEL greatly simplifies \hich will permit editing of object files.

the construction of program measurement, protection, trans->, Newer versions provide a limited facility for changing instructions

lation, and debugging tools. EEL fifs from other systems (Wall: personal communications).

int main(int argc, char* argv[]) mach_inst incr_count_code[] =

executable* exec = new executable(argv[1]); #include “incr count.bin”
exec->read_contents(); L h
routine* r; long incr_count_offsets[] =

FOREACH_ROUTINE (r, exec->routines())
#include “incr_count.oft”

instrument(r); L
while(lexec->hidden_routines()->is_empty()) class incr_count_snippet
: public tagged_code_snippet
r = exec->hidden_routines()->f irst(); {
exec->hidden_routines()->remove(r); public:
instrument(r); incr_count_snippet()
exec->routines()->add(r); : tagged_code_snippet(incr_count_code,
} sizeof(incr_count_code),
} NULL,
addr x NULL,
= exec->edited_addr(exec->start_address()); incr_count_offsets,
exec->write_edited_executable(st_cat(argv[1], size_of(incr:count_oﬁsets))
“.count”), {
X); }
return (0); }
}
code_snippet*
void instrument(routine* r) incr_count(long counter_num)
{
static long num = 0; assert(0 <= counter_num);
cfg* g = r->control_f low_graph();
bb* b; tagged_code_snippet* snippet
FOREACH_BB(b, g->blocks()) = new incr_count_snippet();
addr counter_addr = COUNTER_START
if (1 < b->succ()->size()) + counter_num * sizeof(long);
edge* e; SET_SETHI_HI(*snippet->f ind_inst(1),
FOREACH_EDGE (e, b->succ()) counter_addr);
SET_SETHI_LOW(*snippet->f ind_inst(2),
e->add_code_along(incr_count(num)); counter_addr);
num +=1; SET_SETHI_LOW(*snippet->f ind_inst(3),
, } counter_addr);
return (snippet);
r->produce_edited_routine(); }
r->delete_control_f low_graph();
}
FIGURE 1. Instrumentation routines for a branch FIGURE 2. Low-level instrumentation for branch
counting tool (see Srivastava and Eustace [23]). counting on a SPARC processor.

two systems are similaHowever a much lager diference abstractionscontmol-flow graphs(CFGs) and instructions
is apparent in the low-level foreign code (Fig@je A CFG is a directed graph whose nodes are basic blocks
3 EEL Abstractions (single-entry single-exit straight-line code sequences) and
whose edges represent control flow between blocks [1].
EEL provides five major abstractions (C++ class hierar- EEL provides extensive control-flow and data-flow analysis
chies) that allow a tool to examine and modify an execut- for CFGs Blocks contain a sequence intructions each
able: executable, routine, CFG, instruction, and snibpet. of which is a machine-independent description of a machine
An executableontains code and data from either an object, instruction. A tool edits a CFG by deleting instructions or
library, or executable file. A tool opens an executable, addingcode snippetto blocks and edges. A snippet encap-
examines and modifies its contents, and writes an editedsulates machine-specific foreign code and provides context-
version. An executable primarily contairmitines the sec- dependent register allocation. EEL modifies calls, branch,
ond abstraction, but also contains non-executable data. Aand jumps to ensure that control flows correctly in the
tool can examine and modify routines in any order and edited program.
place them, and new routines, in the edited executable in

any order EEL represents a routissbody with two further EEL's abstractions are similar to those found in compil-

ers, which is not surprising given that both systems manipu-
1. EEL also supports interprocedural analysis and call graphs, which arelate programs. Like many recent compilers—suchyes
not described here. [26]—EELs internal representation is a regidtansfer

level (RTL) instruction description [10]. A crucial dfr- preted as an instruction, but it does not miss entry points,

ence, howeveris that a compiler writer can choos@lR which is important to construct accurate CFGs.

operations with clean semantics and translate constructs toa 4. The key part of the analysis occurs when EEL con-

sequence of operations, while each EEL instruction muststructs a routing’ control-flow graph. A reachable, but

capture the semantics of a machine instruction. invalid, instruction in a CFG leads EEL to assume that the
The remainder of this section presents these abstractionsoutine contains data. Howeyaemreachable instructions at

in more detail and describes the analysis underlying them. the end of a routine comprise another routine, which EEL

records in its symbol table and analyzes. As a sifietef

3.1 Executables recognizing a new routine may add entry points to existing
EEL executable objects are an abstraction of executableroutines.
files—object, library, or static and dynamically-linked pro- This analysis refines the initial symbol table and allows

grams—that hide dérences among file formats. Most each routine to be identified and processed individually
operations are inquiries that return the location or size of awith full knowledge of its interprocedural linkages. In a
named entitysuch as a routine. A few operations modify a stripped executable, the analysis finds all routines, but can-
programs state by changing a memory location or replacing not recreate their names, which makes many tools, such as
or adding a routine. Most editing, howevisrperformed on program profilers, far less useful.

a routines control-flow graph, as described below EEL maintains symbol table information for the edited
Symbol table information in executable files is typically program. EEL uses it to produce debugging information for
incomplete or misleading [15], which greatly complicates the edited executable, so that standard tools, such as debug-

accurate analysis of a program. For example, compilersgers, work for edited programs.

“hide” routines by not producing debugger symbol table .
information or put data tables in the text segment with a 3-2 Routines o

symbol table entry indistinguishable from a routinen Routines are named objects in a progeatekt segment
addition, symbol tables commonly record only the starting that coqta|n mstructlons and dgta. EEL uses rput!nes in two
point of a routine and do not distinguish multiple entry roles. F|rst., they hold information abqut an entity in the text
points arising from Fortran ENTRstatements or interpro- ~ Segment (its name, extent, entry points, etc.). Second, rou-

cedural jumps. Relocation information, when available, can tinés provide the interface to EBLcontrol- and data-flow
refine this information. analysis and editing facilityvhich is described below

EEL uses a more general, but sometimes less precise3.3 Control-Flow Graph
approach and refines a symbol table by analyzing a program

to _f'?d Tdhata talble_s,hhldden rolutltnes, .and multiple entry flow graph (CFG) of a routine. EEL represents a routine as a
points.) -e analysis has several s age’s. CFG, as opposed to a sequence of instructions, for three rea-

1. Initially, EEL reads a prograsrsymbol table and g4ns First, the initial application of EElGpt, required
eliminates all duplicate, temporagnd debugging labels in ~rgs to implement &ient profiling and tracing by plac-
the text segment. It also discards labels that are not aligneqng instrumentation on CFG edges [4]. Moreoygevious
on an instruction 'boundary or that are thgeaof a branch oy herience with simple tools showed that even they could
or jump (not call!) from the preceding routine (these are eqyce overhead by using control-flow information to place
probably internal labels). The remaining labels form the ini- jnqyymentation intelligentySecond, EEL itself uses CFGs
tial set of routines. Each routiiseinitial entry point is its to adjust addresses in branch and jump instructidestaé
starting address. by editing.

2. If the executable has no symbol table (i.e., is Most important, CFGs provide an architecture-indepen-
stripped), the initial set of routines contains only the pro- dent way of representing control flow key question is
grams entry point and the first address in the text segment.how to represent the semantics of instructions on a particu-
In this case, EEL makes an exira pass over the program’ jar machine. Unlike compiler intermediate representations,
instructions to find direct subroutine calls. These instruc- yhich are the usual basis for CFGs, machine instructions
tions’ tagets become t.he |n.|t|al set of routines. can have internal control flowFor example, delayed

3. EEL then examines instructions to find jumps out of pranches in many RISC processors execute the subsequent
a routine or calls on routines not in this initial set. The desti- instruction (in the branchielay slo} before transferring
nation of these control transfers become entry points to thecontrol. These instructions come in many variants, such as
routines that contain them. This analysis is conservative. ltannulled branches that execute the delay slot only if the
may find invalid entries, as for example, when data is inter- branch is taken. EEL explicitly represents instructions’
1. EEL cannot yet modify libraries, although the extension is straight-for- mternelllﬂcontrol flow Inda C.fFG’ ISO thgt.mtema.l and external
ward. When complete, this feature will permit editing dynamically-linked CONtrol flow are treated unitormly and instructions appear to
programs by modifying their executable (already working) and dynamic have no control flow (i.e., are non-delayed branches).
libraries. Figure3 shows an instruction in an annulled braacaielay

The primary program representation in EEL is a control-

bne. a L1 in an architecture and compiierdependent manner—by

add’ %1 %2 %1 computing a backward slice [14,28] from the jump instruc-
tion’s registers. Although at the time of slicing, the CFG is
incomplete, a path from the routisentry to the jump must
compute the dispatch tatdeaddress (or the jump would fail

| bne, a L1 | along the path). After finding the taldeaddress, EEL
\ builds a precise CFG for the indirect jump and subsequently
modifies the table to point to edited locations. The same
add %1, %2, %1 slice also can find the address used in the common idiom of
T~ an indirect jump to a literal value. If a slice fails to find a
dispatch table or literal address, EEL marks the CFG as
FIGURE 3. Example of CFG normalization. EEL CFGs incomplete and' inserts code to translate the janiget
explicitly represent control flow in instructions. In this address at run time.
case, the add instruction is in the delay slot of an Fortunately EELs slicing makes run-time translation a

annulled conditional branch and executes only if the
branch is taken, so the add instruction appears along
only one CFG edge.

rare occurrence. @/measured the frequency of unanalyz-
able indirect jumps in the SPEC92 benchmarks. On SunOS
4.1.3 using gcc version 2.6.2 and the Sun Fortran compiler
slot, which is placed in its own basic block, which is linked EEL found no unanalyzable indirect jumps among the 1,325
to the appropriate outgoing edge of the brambiock. This indirect jumps (and 1,027,148 instructions thar5 rou-
process can repeat several times if the instruction from thetines). On Solaris 2.4 using the SunPro compilers (version

delay slot is itself a delayed control-transfér a non- sc3.0.1), EEL found 138 unanalyzable indirect jumps
annulled branch, the delay slot instruction is duplicated @mong the 1,244 indirect jumps (and 1,185,018 instructions
along both edges. in 16,613 routines). All 138 indirect jumps resulted from

With this explicit representation, a tool can add foreign OPtimizing a call in a return statement by popping the cur-
code before or after almost any instruction without consid- ent stack frame and jumping to the callee. Six of these

ering how the code interacts with local control flvhich ~ jumps occurred in compiled C code and the remainder were
means that the tool need not be aware of architecturalin the Fortran libraryNone of these jumpsfett EEL, since
details such as delayed branches. Howeifeleft unre- EEL's CFG are intraprocedural.

versed, duplicated delay slot instructions increase a pro-
grams size and execution time, so EEL folds instructions 3.3.1 Editing CFGs
back into unedited delay slots. A tool edits a routing CFG by deleting instructions,

EEL marks some CFG edges and blocks as uneditable, taadding new code before or after any instruction, or adding
simplify the process of producing executable code from ancode along a control-flow graph edge. #nippet
edited CFG. Most uneditable blocks and edges transfer con{Section3.5) contains the new code. EEL accumulates edits
trol out of the current routine (e.g., the delay slot after a without changing the CFG. In general, this batch style of
call), which would require interprocedural editing to place editing works well since tools operate on the original CFG
foreign code in another routine. Although 15-20% of edges and need not see changes as they o&nippet call-backs
and blocks are uneditable, it is usually easy to find an alter-(Section3.5), which provide a final chance to modify an
native location to edit (e.g., before the call). edit, easily handled the few exceptions.

Because EEL builds CFGs a single routine at a time, it After a tool edits a CFG, EEL produces a new version of
treats subroutine calls speciallyEL uses a distinguished, the routine that incorporates the changes. Producing an
zero-length basic block—after the block containing the edited routine involves laying out its blocks and snippets to
call's delayed instruction—as a plaCGhOlder for the control minimize unnecessary jumps and adjusting disp|acements
transfer and possible sidefatdts of the subrouting’body and addresses in control-transfer instructions—or occasion-

In general, when control flow cannot be completely ana- ally replacing these instructions by snippets containing
lyzed, run-time code ensures that control passes to the corinstructions with a longer span.
rect edited instruction [15]. EEL can perform several
standard CFG analyses: dominators, natural loops, live reg-3.4 Instructions
isters, and slicing [1,28]. EEL uses them to improve the pre- EEL instructions are abstractions of RISC-like machine
cision of control analysis and to reduce the need for run-jnstructions. They divide instructions in functional catego-
time mechanisms. These analyses also provide an analyti¢ies and provide operations to inquire about semantics. The
basis for building tools. categories include memory references (loads and stores),

Considey for example, indirect jumps. Most indirect control transfers (calls, returns, system calls, jumps, and
jumps occur in case statements, in which they jump throughbranches), computations, and invalid (data). The categories
a dispatch table of addresses. EEL finds this type of table—are common to many machines, so a tool can analyze EEL

/I Compute a backward address slice with Il INCR_COUNT records a basic block or edge by

respect Ilincrementing its counter in the count array.
/I to register R, from PC.

1* sethi Ox1, %g6 ! upper bits of &counter

bool instruction::backward_slice(bb* b, 2% |d [%lo(0x1) + %g6], %g7 I load counter
addr pc, add %g7, 1, %g7 !increment
int_regr) 3* st %g7, [%lo(0x1) + %g6] | store counter

if (is_easy() || is_hard())
/!l Already in earlier slice
return (true);
else if (writes()->is_nenber(r))
/1 Modifies register R

code_snippet*
routine::incr_counter_code(long counter_num)

assert(0 <= counter_num);

if ! fp_reads()->is_enmpty())
/1 Do not trace floating point ops
mark_as_impossible(b, pc);

else if (reads()->is_empty())
/1 Easy instruction reads nothing

elsrgark—as—easy(b’ pe); SET_SETHI_Hi(*snippet->f ind_inst(1),

{ counter_addr);
SET_SETHI_LOW(*snippet->f ind_inst(2),

counter_addr);
SET_SETHI_LOW(*snippet->f ind_inst(3),

counter_addr);

tagged_code_snippet* snippet
= new incr_count_snippet();
addr counter_addr = PROFILE_COUNTER_START
+ counter_num * sizeof(counter);

// Hard instruction reads registers.
mark_as_hard(b, pc);

int_regread_reg;

/1 Continue slicing them

FOREACH_REG (read_reg, reads()) return (snippet):

b->backward_slice(pc, read_reg); }
} ; FIGURE 5. Sample code snippet (for the SPARC).
return (true); Above the line is the snippet's body, which contains
instructions to increment a profile counter. Labels before
return (false); each line (e.g., “1*”) name instructions that are custom-
ized for each counter. Below the line is gpt code that
FIGURE 4. Operation on instructions. This code com- inserts a counter’s address.

putes a backward address slice for instructions that do

not read memory or call routines (these are analyzed by o
other functions). It demonstrates how EEL instructions instruction. Ypically, this optimization reduces the number

hide architectural detail, but still permit a tool to analyze of allocated EEL instructions by a factor of four
a program. EEL'’s abstractions are in bold.

3.5 Code Snippets

instructions in place of the underlying machine instructions. 5 ~y4e snippet encapsulates foreign code that is added to

These categorigs cover sim.ple RISC machines (e.g., MIPSan executable. On one hand, EEL provides some system-
and SRRC). Since categories are C++ classes, EEL cani,qenendence for snippets since it allocates registers for

derive new ones that span boundaries. For example, theem on the other hand, snippets are the one point at which
autoincrement load in HB"RA-RISC machines is both @ 5 50 js machine specific, since the code in a snippet is

memory refergnce gnd a computatipn. Combining glassescrafted for a machine. This is not a serious drawback, since
unfortunately is unlikely to synthesize the semantics of 4 <ode is often short and carefully written fdiogncy A
CISC instructions, such as string edits. These inStrUCtionS'programmer writes a snippetbody in assembly language

however are also difcult to analyze and instrument o o high jevel language compiled to assembly language, in
because of their dynamic behavior and internal control flow |\ hi-h “case the snippet can be machine-independent.

The best representation may be a sequence of Simple'i:igureS shows a sample snippet.

Instructions [_25]' o] . When a tool creates a snippet, it specifies the instruc-
EEL provides many inquiries about an instrucon’ tions, two sets of registers, and a call-back function (all,
effect on a progrars’state (i.e., which registers it reads and except the first, may be omitted). The first set contains reg-
writes, how it changes the program countar what its jsters used in the snippet that need to be assigned unused
operation is). These inquiries provide enough information yegisters. EEL finds the live registers at the point at which
to analyze many aspects of a program. For example,ihe snippet is inserted and assigns dead (unused) registers to
Figure4 contains code frompt that computes a backward the snippet. If EEL cannot find enough dead registers, it
address slice for address tracing [14]. Because it operates Ovraps the snippet with code to spill registers to the stack.
EEL instructions, this code is similar to the original algo- gometimes, a snippet must use a particular register—for
rithm and independent of an underlying machine. example, to record its value or to execute a subroutine
To improve dficiency, EEL allocates only one instruc- call—and EEL should not spill or assign it. The second set
tion to represent all instances of a particular machine specifies registers that cannot be used, even if free. This

technique of register scavenging [15] is a way of utilizing [
unused registers in snippéts. // Return the EEL instruction corresponding to

. . . /I the machine instruction INST in executable
The final parameter to a snippet is a call-back procedure, |, v =6 at address PC.

which is invoked after register allocation, but before the
instructions are placed in the modified program. The call-

back procedure is passed the regiatercated instructions, ~ nStruction”

mach_inst_make_instruction(executable* exec,

their starting address in memoand details of the register
assignment. The call-back may modify the instructions (but
cannot change their length). This mechanism has been usec
to adjust instruction displacements when an instruction’
final location is known, record addresses for subsequent
backpatching, and adjust code that records the stack pointer
to discount the &écts of EELs spill code.

4 System-Dependent EEL

Beneath the machine-independent portions of EEL are
system- and architecture-specific components that manipu-
late executable files and machine instructions. The first
piece is a library to read and write Unix executable files.
EEL currently uses the GNUbfd library [7], which is also
used by the GNU assemblénker, and debuggeg@b).

The second piece is an EEL-specific library to parse,
decode, analyze, and modify binary instructions. Previous
experience gued against implementing these routines by
hand. A surprising number of bugsgpt arose in machine-
specific binary instruction manipulations. These bugs were
of two types: improperly decoding or extracting an instruc-
tion field or omitting a particular instance from an analysis.
EEL alleviates these problems by generating this low-level
code from a concise, high-level machine description.

The toolspawntransforms a file of annotated C++ func-
tions and a machine description into machine-specific code
for analyzing and manipulating binary instructions. The
code in the file defines the interface and functionality of
EELs machine-specific library (see Fig@e The annota-
tions identify points at whiclspawnneeds to insert code,
derived from a maching'description, to decode and manip-
ulate a particular machirgeinstructions.

For example, consider the function in FigBrewhich
creates an EEL instruction corresponding to a machine }
instruction. The function examines an instruction, to deter-
mine the class of the corresponding EEL instruction. The
code for a particular class of instruction calls the EEL
instruction constructorpassing it the machine instruction
and some values extracted from instruction fields.

Spawns annotations (in bold) specify instruction classes

mach_inst* inst,
addr pc)

{{I'NST inst AT pc CATEGORY
CALL DI RECT::
return new call_instruction(inst);;
JUWP DI RECT: :
return new jump_instruction(inst);;
BRANCH DI RECT: :
return new branch_instruction(inst);;
JUWP: : {
if (mach_inst_do_op(inst, OP_ICALL))
return new
indirect_call_instruction(inst);
if (mach_inst_do_op(inst, OP_RET))
return new return_instruction(inst);
if({{1S LITERAL}} && {{READ 1}} ==0)
return new jump_instruction(inst);
return new indirect_jump_instruction(inst);

LOAD STORE: :
return new
memory_load_store_instruction(inst,
{{WDTH });;
LOAD: :
return new
memory_load_instruction(inst, {{WDTH} });;
STORE: :
return new
memory_store_instruction(inst, {{W DTH} });;
SYSTEM :
if ((*inst & TRAP_COND) == TA
&& IMM(*inst) == ST_SYSCALL) {
mach_inst *i = inst - 1;
return new
system_call_instruction(inst,
{{INST i LITVAL}});
} else return new
system_call_instruction(inst, -1);

VALI D: :
return new computation_instruction(inst);;
ANY: :
return new invalid_instruction(inst);;
B

FIGURE 6. EEL machine-specific code. This function
builds an EEL instruction corresponding to a machine
instruction. Spawn replace annotations (in bold) in the
C++ code with machine-specific code that dispatches on
different instruction types and extracts or modifies
instruction fields.

and attributesSpawnprocesses the code and replaces the of bytes of accessed memgBpawnis currently unaware of

annotations with machine-specific code to dispatch on an? syst(_ar’rs suproutlne and SVSt?_m call conver?tlons [3]_’ _SO
instructions type and to extract and modify instruction thgse |nstruct|0ns. require additional processing to dlstm.-
fields. For example, in the memory-referencing instructions, 9uish overloaded instruction uses. For example, the code in

spawnreplaces the annotatigfWIDTH}} by the number the figure resolves the 8RC's three overload uses of a
jump instruction.

1. ltis not, howeveia way of freeing a register across the entire program .) . o .
for the foreign code. Later releases of EEL will provide a mechanism to Spawnderives its machine-specific information from a

free a register machine description, which specifies both instruction syn-

tax (i.e., encoding) and semantics. The syntax description is _ _ o
similar to the one in Ramseytetagetable debugger [18] Z'”St“‘c“c’”f leld def initions:
and NJ Machine Codeodlkit. Spawnextends Ramsey’ instruction{32} f ields
work by expressing instructions’ semantics with a simple 00||o 30:31, op2 22:24, op3 19:f24, opc 5:13, |
: P : : : rd 25:29, rs1 14:18, rs2 0:4, i ag 13:13,
reglstertransfer-dgscrlptlon of |n.struct|0n semantlgs [9]. simm13 0:12, imm22 0:21, disp22 021,
Spawndescriptions are concise and easily derived from disp30 0:29, cond 25:28, af lag 29:29,
processor architecture manuals. They first describe registers ~ asi 5:12
gnd instruction fields py specify!ng their w?dth and, fo_r r€g- J/ General purpose register set
isters, a type for use in semantic expressions. Each instruc- 7
tion is described by a pattern that identifies its binary = register integer{32} R[35]
di d a semantic expression that describes its opera- alias integer{32} PSR is R[32]
encoding an p PEra- yjias integer{32} FSR is R[33]
tion and internal control flow

Spawn borrowing from Ramsewdirectly supports the
common convention of expressing instruction encodings as control-transfer instruction syntax:

register integer{32} pc

a matrix of instruction name&pawns concise instruction "

encoding encourages complete specification of an instruc- pat bn be be bl bleu bcs bneg bvs

tion set, which allows spawn-generated code to reliably ba bne bg bge bgu bcc bpos bvc

detect invalid instructions and enables EE=tontrol-flow fon fbne fblg fbul fbl foug fbg fbu

analysis to distinguish data from instructions by detecting Sff:, 2239123 2%“192 I:ki%es 2%“199 L%'gs ‘;%“2"3 fctéos

where control passes to an invalid instruction. cba cb0 cb03 cb02 cb023 cbhOl cb013 ch012
Figure7 shows a portion afpawns SARC description. is 0p0 && 0p2=[0b010 06110 0b111]

To make a description concise, similar instructions are && cond=[0..15]

grouped together and described by a common semantic

function (which can be parameterized for smalledénces . . .
. . . . /I Control-transfer instruction semantics:

among instructions). For example, this figure contains the

semantics of many BRC control-transfer instructions. val disp is (integer{32})disp30

The functionbranch describes all conditional branches. It Va'\rb\rg”%th_isﬁ diso:

consists of an expression parameterized by a condition code oy rp?' p';’it - af P lag=1 ? annul)

register (i.e., integer or floating point) and a branch test.

When these guments are bound, the expression describes sem [bne be b ble bge bl bgu

a particular branch instructicnsemantics. The description bleu bcc bes bpos bneg by bvs]
also contains minimal timing information: the semicolon in is branch PSR @ ['ne ‘e ‘g ‘le ‘ge ‘I ‘gu

the functions body indicates that the first statement exe- ‘leu ‘cc 'cs 'pos ‘neg ‘ve 'vs]

cutes before the second statement (which overlaps the next sem [fbu fog fbug bl foul fblg fone fbe
instructions execution). Immediately below its description, fbue foge fbuge fhle fbule fbo]

this function is applied to the integer condition codes (PSR) s branch FSR @ [u‘g'ug 1 ul"lg 'ne ‘be
" . ue ‘ge ‘uge ‘ble ‘ule ‘o]

and a vector of test conditions, yielding a vector of fully
instantiated semantic functions. The semantic statements semcallis '
(sem) binds each function to the corresponding instruction “zp“fﬂ'{“eger{sznd'Sp30<<2)' R[15]:=pc;
(whose encoding was defined previously). sem J-m& i's_t:addr, R[rd]:=pc; pei=t

Spawn extracts much information about a mactsne’
instructions and registers from a machine description. It
determines a classification for each instruction (jump, call,
store, invalid, etc.). It finds registers that each instruction
reads and writes and literal values in instruction fields. It
finds the number of registers in each register set and their FGURE 7. Portion of spawn’s SPARC description. The
width and type. It even generates C++ code to replicate the first part defines resources such as registers and instruc-
computation in most instructions, such as computing the tion fields. The middle part defines the encoding (syntax)
target address of a jump or load and the result of an add. of some control-transfer instructions. The final part

. L . . defines these instructions’ semantics. In this description,
Machine descriptions of this type are far more concise ' he keyword “val” introduces a (function) binding. The
than hand-written code to manipulate instructions. For statements started by “sem” define the semantics of
example, the SMRC description is 145 non-comment, non- | instructions in their first argument by the corresponding
blank lines and the mostly machine-independent annotated Sémantic function in their second argument. A comma
C++ file is 504 lines. The handwritten equivalent is 2,268 = SeParates operations that can execute in parallel. A

- . . . semicolon separates sequential operations.
lines (spawnproduces a file 6,178 lines long). For compari- P d :

son, a spawn description of the MIPS R2000 architecture ismuch better code and inlines member functions, which

128 lines and the Digital Alpha architecture is 138 lines.

5 Experience

EEL currently runs on workstations with ARC proces-

greatly reduces the overhead of E€hbstract datatypes.
Better compilers should further reduce the C++ penalty
EEL, because of its object-oriented programming style
and its explicit program representations, allocates many
more objects (317,494 vs. 84,655) than the old code, which

sors, under SunOS and Solaris (an older version also ran oritself increases execution time. In particulBEL's CFGs

MIPS under Ultrix). V& rewroteqpt to use this libraryln

are lager (26,912 vs. 15,441 blodkswhich disproportion-

the processgpt dropped from 14,500 non-comment, non- ately increases execution time because many CFG algo-
blank lines of C code to 6,276 lines of C++ code, of which rithms are non-linear
975 lines are system-dependent manipulations of snippets To date, we have used EEL to build four other tools.

(which contain 16 lines of assembly code). More impor-

Alvin Lebeck and David \WWod built Active Memory [16],

tantly, the newqgpt is far easier to understand and modify which is a platform for diciently simulating memory sys-
and contains several machine-specific optimizations thattems. It inserts a quick test before load and store instruc-

were too cumbersome to implement in the old system.

Program Size
Tool (bytes) Run Time (sec.)
Version (text & data) (user + system)
gpt 246,784 4.4
gpt -02 164,864 35
gpt2 950,240 19.0
gpt2 -02 810,976 8.4
gpt2 -ND 868,320 18.0
gpt2 -O2 -ND 720,864 7.7

TABLE 1. Comparison of gpt and gpt2. gpt is the original
program profiler. qpt2 is a new profiler, based on EEL, that
uses the same algorithms. Both tools instrumented a small
program, spim, that consists of 320,536 bytes of text and
data. Programs were compiled with gcc (g++) version
2.6.3 and run on a SPARCstation 20/61, with a 60Mhz
SuperSPARC processor and local disk. Times are best of
three runs. Base versions were compiled without
optimization. The -O2 versions were compiled at that
optimization level. The -ND versions were compiled
without assert statements (gpt contains no asserts).

tions to check the state of the accessed locatioferBift
states invoke handlers to perform tasks such as cache simu-
lation. Active Memory exploits EEk ability to insert for-
eign code diciently and to add many routines (another
program, in fact) to an executable. Steven Reinhardt built a
direct-execution architectural simulator called Elsie. Elsie
replaces loads, stores, and system calls in a program with
simulator calls (using EEL) and then loads the edited exe-
cutable into the simulatoiSashikanth Chandrasekaran is
rewriting the Wsconsin Whd Tunnel architectural simula-
tor [19] using EEL. W also used EEL to re-implement
Blizzard-S5 fine-grain access control [20]. The old version
of Blizzard-S used code frompt to insert access-control
tests. The new version greatly improves performance with
several optimizations that would have beerfidift to
implement in the old system. For example, one optimization
exploits EELs live register analysis to insert a faster test
sequence when condition codes are not live. In spite of
these optimizations, the new version consists of roughly
1,300 lines of code (exclusive of EEL), while the old ver-
sion contains approximately 2,800 lines (exclusiveyutf
specific code).

EEL consists of 13,960 non-comment, non-blank lines of 6 Conclusions
C++ code, of which 1,501 lines are system-dependent

manipulations of snippets (which contaii4llines of ble tools to edit executable programeolE to modify exe-
assembly code), 410 lines are executable-format SpeCiﬁC'cutabIes have proven their value in many areas. However
and 2,268 are (handwritten) architecture-specific code. hese tools are ditult and expensive to develop and usu-
Unfortunately this reduction in a toa’program length and 51y are specific to an architecture and operating-system.
complexity comes at the cost of increased tool size and exegg| aqdresses these problems by providing a mostly archi-
cution time. ‘Bble1 shows the size and running time of the (ocyre- and entirely system-independent set of operations
old (@pY) and new @pt9) versions, compiled several ways. (g read, analyze, and modify code in an executable file. EEL
Without optimization, the new version runs 4.3 times jqet is highly portable because of its extensive program
slower Optimization, howevenarrows the gap to 2.4 times 5n51vsis and because its machine-specific portion is derived
slower It is worth noting thagpt2s performance is still f4m 4 concise machine description. EEL does not solve all
acceptable. These measurements used the hand'wr'tteBroblems in executable editing (self-modifying code and

machine specific code, even though the spawn-generateq,restricted indirect jumps and calls are open problems) but
code ran at the same speed.

EEL is a library that aids programmers in writing porta-

; ; ; s ; ; 1. The two programs use slightly féifent definitions of a basic block
The time gap IS attributable to ifiefencies introduced (EEL's blocks end at calls). Howeyermore important diérence is EEls

by C'H' Qnd the style in which EEL is writterurfiing on 12,774 delay slot blocks, 920 CFG entry/exit blocks, and 1,942 call surro-
optimization narrows the gap because at -O2, g++ producesate blocks, none of which exist in the old code.

it simplifies the analysis and manipulations of most pro-
grams.

For an EEL programmé& manual and information on [15]
the status of EEL, check:
http://www.cs.wisc.edu/~larus/eel.html [16]

Acknowledgments

Norman Ramsey and Mary Fernandez kindly provided [17]
copies of their machine descriptions and information on [18]
their toolkit. Amitabh Srivastava, om Ball, Trishul
Chilimbi, Mark Hill, Alvin Lebeck, Anne Rogers, Brad
Richards, David I, and David Vdod provided helpful [19]
comments on drafts of this pap&ashikanth Chandraseka-
ran, Babak Falsafi, Alvin Lebeck, and Steve Reinhardt and
other members of the ¥tonsin Whd Tunnel project
bravely used a new tool and contributed many helpful sug-[20]
gestions.

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrdy. Ullman. Compilers:
Principles, Techniques, and Toofsddison-Wesley, 1985. (21]

[2] Kristy Andrews and Duane Sand. Migrating a CISC Computer
Family onto RISC via Object Code TranslationPimceedings of
the Fifth International Conference on Architectural Support for [22]
Programming Languages and Operating Systems (ASPLOS V)
pages 213-222, October 1992. [23]

[3] Mark W. Bailey and JackVv. Davidson. A Formal Model and
Specification Language for Procedure Calling Conventions. In
Conference Record of POPL '95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languapages 298— [24]
310, January 1995.

[4] Thomas Ball and Jamé&s Larus. Optimally Profiling and Tracing
Programs ACM Transactions on Programming Languages and
Systems16(4):1319-1360, July 1994. [25]

[5] Anita Borg, R.E. Kessler, and Davi&/. Wall. Generation and
Analysis of Very Long Address Traces.Rnoceedings of the 17th
Annual International Symposium on Computer Architecfoages [26]
270-281, May 1990.

[6] Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying Be- [27]
havioral Differences Between C and C++ Progradesirnal of
Programming Language4995. To appear.

[7] Steve Chamberlairiibbfd: The Binary File Descriptor Library

Cygnus Support, bfd version 3.0 edition, April 1991. [28]
[8] J.Bradley Chen and BriaN. Bershad. The Impact of Operating
System Structure on Memory System Performancé&rbateed- [29]

ings of the Fourteenth ACM Symposium on Operating System
Principles (SOSR)pages 120-133, 1993.

9] JackW. Davidson and Christoph®/. Fraser. Code Selection
through Object Code OptimizatioACM Transactions on Pro-
gramming Languages and SysteB(@):505-526, October 1984.

[10] JackW. Davidson and Christoph®V. Fraser. Register Allocation
and Exhaustive Peephole Optimizati®oftware Practice & Ex-
perience 14(9):857-865, September 1994.

[11] Amer Diwan, David Tarditi, and Eliot Moss. Memory Subsystem
Performance of Programs Using Copying Garbage Collection. In
Conference Record of the Twenty-First Annual ACM Symposium
on Principles of Programming Languaggsges 1-14, January
1994.

[12] TomR. Halfhill. Emulation: RISC’s Secret Weapdyte pages
119-130, April 1994.

[13] Reed Hastings and Bob Joyce. Purify: Fast Detection of Memory
Leaks and Access Errors. Rroceedings of the Winter Usenix
Conferencepages 1-12, January 1992.

[14] JameR. Larus. Abstract Execution: A Technique for Efficiently

10

Tracing ProgramsSoftware Practice & Experienc20(12):1241—
1258, December 1990.

JameR. Larus and Thomas Ball. Rewriting Executable Files to
Measure Program BehavioBoftware Practice & Experience
24(2):197-218, February 1994.

Alvin R. Lebeck and Davié. Wood. Active Memory: A New Ab-
straction for Memory-System Simulation. Rroceedings of the
1995 ACM Sigmetrics Conference on Measurement and Modeling
of Computer Systemblay 1995. To appear.

Pure Software. United States Patent 5,193,180, March 1993.

Norman Ramsey and David Hanson. A Retargetable Debugger. In
Proceedings of the SIGPLAN '92 Conference on Programming
Language Design and Implementation (PLpiages 22-31, June
1992.

SteverK. Reinhardt, MarlD. Hill, JamesR. Larus, AlvinR. Leb-

eck, Jame€. Lewis, and David\. Wood. The Wisconsin Wind
Tunnel: Virtual Prototyping of Parallel ComputersPlimceedings

of the 1993 ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systenmages 48—60, May 1993.

loannis Schoinas, Babak Falsafi, AN Lebeck, SteveK. Re-
inhardt, JameR. Larus, and David. Wood. Fine-grain Access
Control for Distributed Shared Memory. Proceedings of the
Sixth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOBadgks
297-307, October 1994.

RichardL. Sites, Anton Chernoff, Matthef®. Kirk, MauriceP.

Marks, and Scott. Robinson. Binary Translatio@ommunica-
tions of the ACM36(2):69-81, February 1993.

MichaelD. Smith. Tracing with pixie. Memo from Center for In-
tegrated Systems, Stanford Univ., April 1991.

Amitabh Srivastava and Alan Eustace. ATOM A System for
Building Customized Program Analysis Tools.Rroceedings of

the SIGPLAN '94 Conference on Programming Language Design
and Implementation (PLDJpages 196-205, June 1994.

Amitabh Srivastava and David Wall. Link-Time Optimization of
Address Calculation on a 64-bit Architecture.Aroceedings of
the SIGPLAN '94 Conference on Programming Language Design
and Implementation (PLDJpages 49-60, June 1994.

Amitabh Srivastava and Davily. Wall. A practical system for in-
termodule code optimization at link-timéournal of Program-
ming Languagesl(1):1-18, March 1993.

RichardM. Stallman.Using and Porting GNU CCFree Software
Foundation, October 1993. For GCC Version 2.5.

Robert Wahbe, Steven Lucco, ThontasAnderson, and Susan
Graham. Efficient Software-Based Fault IsolationPtnceedings

of the Fourteenth ACM Symposium on Operating System Princi-
ples (SOSR)pages 203-216, December 1993.

Mark Weiser. Program SlicindEEE Transactions on Software
Engineering SE-10(4):352-357, July 1984.

CherylA. Wiecek. A Case Study of VAX-11 Instruction Set Usage
for Compiler Execution. IfProceedings of Symposium on Archi-
tectural Support for Programming Languages and Operations Sys-
tems pages 177-184, April 1982.

