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Abstract

Recent shared-memory parallel computer systems offer the
exciting possibility of customizing memory coherence proto-
cols to fit an application’s semantics and sharing patterns.
Custom protocols have been used to achieve message-pass-
ing performance—while retaining the convenient program-
ming model of a global address space—and to implement
high-level language constructs. Unfortunately, coherence
protocols written in a conventional language such as C are
difficult to write, debug, understand, or modify. This paper
describesTeapot, a small, domain-specific language for
writing coherence protocols. Teapot uses continuations to
help reduce the complexity of writing protocols. Simple
static analysis in the Teapot compiler eliminates much of the
overhead of continuations and results in protocols that run
nearly as fast as hand-written C code. A Teapot specifica-
tion can be compiled both to an executable coherence proto-
col and to input for a model checking system, which permits
the specification to be verified. We report our experiences
coding and verifying several protocols written in Teapot,
along with measurements of the overhead incurred by writ-
ing a protocol in a higher-level language.

1  Intr oduction

A shared-memory coherence protocol manages the repli-
cation of data, to ensure that a parallel program sees a con-
sistent view of memory. In general, a coherence protocol
ensures consistency when a processor writes to a shared
location either by invalidating outstanding copies or by
updating copies with the new value. A protocol can deter-
mine, to a large extent, the performance of a shared-memory
program, since communication occurs through loads and
stores to shared data. A mismatch between a protocol and
an application’s sharing pattern leads to excessive commu-
nication. For example, invalidation protocols perform
poorly for producer-consumer sharing, since invalidating
outstanding copies forces the consumers to re-request data,
which requires up to four protocol messages for a small data
transfer [7].

Recent shared-memory architectures provide, to varying
degrees, the flexibility of tailoring a coherence protocol to
better fit an application’s needs. An example of such an
architecture, the one on which this work is based, is the
Tempest interface, a specification of the mechanisms neces-
sary to implement shared-memory coherence protocols at
user-level, i.e., as unpriviledged code running in an applica-
tion program [14, 23]. With Tempest, an application pro-
grammer can either use a ready-made shared-memory
protocol from a library or construct a customized shared-
memory protocol that suits an application’s needs, thereby
achieving higher performance [11]. Compiler writers can
exploit custom coherence policies as well. For example, a
recent paper showed how a custom protocol (LCM) enables
a compiler to use a fine-grain, copy-on-write mechanism to
implement a language’s copy-in, copy-out semantics, with-
out being limited by conservative pointer analysis [18].

Unfortunately, Tempest mechanisms are low level and
protocols can be difficult to write, debug, and modify. Writ-
ing coherence protocols in an ad-hoc manner (as C pro-
grams) artificially limits the number of programmers
willing or able to develop custom protocols. This paper
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addresses the problem with a new language, called Teapot,
that supports both writing and verifying coherence proto-
cols. By reducing the complexity of developing new proto-
cols, Teapot increases the attractiveness of systems, such as
Stanford Flash [17], Wisconsin Typhoon [23], and Blizzard
[24], that implement protocols in software. Protocols writ-
ten in Teapot could also be used for distributed object sys-
tems, such as Multipol [6], CRL [16], and Orca [3].

The main difficulty in writing a coherence protocol is the
requirement that all protocol actions (code executed in
response to a protocol event, such as a read miss or an
incoming message) run to completion before relinquishing
the processor to execute protocol code for other cache
blocks. Action code, however, frequently needs to engage in
blocking communication, e.g., sending a request message to
another node and awaiting a reply. To circumvent this prob-
lem, protocol programmers introduce intermediate states in
their finite state machines. A protocol awaits a reply mes-
sage by shifting into an intermediate state and relinquishing
the processor. The intermediate state handles the message
on its arrival, and then goes to the destination state (one that
reflects the overall effect of the protocol event). The result-
ing proliferation of states complicates protocols, because
non-atomic transitions force a programmer to reason about
the interaction between all messages and each state. In prac-
tice, protocols written in this style are difficult to debug or
modify. Detailed discussion of coherence protocols and
their complications appears in Section2.

Teapot allows a programmer to suspend an action han-
dler and await an asynchronous event by calling a waiting
function with the current continuation (Section3 and
Section4). Teapot also permits the programmer to concisely
specify how to handle other messages that arrive while wait-
ing. The Teapot compiler transforms the handler with sus-
pending calls into atomically executable pieces that can run
without causing deadlock. Analysis and optimization in the
Teapot compiler (Section5) eliminates most of the over-
head incurred by writing protocols at a higher level of
abstraction.

Section6 presents our experience with using Teapot to
write several protocols for the Blizzard system [24]. With
optimization disabled, our compiler generates protocol code
in C that runs application programs within 13% of the speed
of a hand-written protocol. With optimization enabled, the
performance is (except for one program) within 10% of the
corresponding hand-written protocol, which is very attrac-
tive given the vastly superior protocol writing environment.

Even with better programming abstractions, protocols
can be difficult to write correctly. Field testing cannot
ensure correctness since protocols contain complex timing-
dependent paths. Although completely verifying a nontriv-
ial protocol is difficult, model checking through state space
exploration has emerged as a viable debugging aid for com-
plex protocols [8, 9, 22, 28]. In addition to executable C
code, the back-end of the Teapot compiler can generate

input for the MurΦ [9] verification system (Section7). Pro-
tocol verification has been one of the greatest benefits of
this system, as it has reduced the time to develop a complex
protocol by an order of magnitude.

2  Why are coherence protocols hard?

A shared-memory system can be built on two basic
mechanisms. The first mechanism,access control, allows
the system to control access to memory by permitting read
and write accesses only for valid, cached data. Reading or
writing an invalid location or writing a valid but read-only
location must cause anaccess fault and invoke the coher-
ence protocol. The second mechanism,communication,
enables a system to transfer control information and data
among processors.

A protocol comes into play at an access fault. It must sat-
isfy the memory access by bringing the data to the faulting
processor’s memory. In many protocols, each block of
shared data has ahome node that coordinates accesses to the
block. The accessing processor sends a request to the refer-
enced block’s home processor, which performs bookkeep-
ing and returns the data. Once a processor obtains the data,
it caches a copy, which can be subsequently accessed until it
is invalidated. Many protocols, for example our Stache pro-
tocol [23], enforce coherence by permitting only a single
writer (or multiple readers) to a block. When a home node
receives a request for a writable copy of a block, it invali-
dates the outstanding copies before returning the block. The
memory reference and the request and invalidation mes-
sages areprotocol events, which cause transitions in a pro-
tocol state machine.

Both the home node and caching processors record state
for a block. At a protocol event for blockB, the protocol
consultsB’s state to determine an action, which may send
messages and update both the state and the contents of the
block in memory. For example, Figure1 depicts states in a
simple protocol for a block at a non-home node (Figure2
shows the corresponding home node state machine.) Con-
sider a block that is initiallyInvalid. When the processor

��������� 	 
 �
� ��
������ �

����	 ������� �

� ����
�����������	 ��� � ��
������ ��� ����� �
	 ���!��� 	 
���� ��"�# $ ��� �&% ����'(� � 
 $�� �

) *,+.- /
0 1.2�3 - 4

5 / 6 +
287 9: ;!< =8> : ? =8@ A BDC E

F = GIH ;&JLK > A ? E A M

C @ JON A
F JOP @ = : ; K N : @ = P > A G J Q,R M

Figure 1: Idealized protocol state machine (non-home
side). Transition are labeled with cause and, in
parentheses, action.
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reads the block, the protocol obtains a read-only copy from
the home node and changes its state toReadable. Later, the
home node may invalidate the copy with anInvalidate mes-
sage, which causes a transition to stateInvalid. Simulta-
neously, the block’s access permissions are changed so
subsequent reads or writes cause an access fault.

In general, actions execute on transitions between states,
which are caused by protocol events. Actions may send
messages to other processors, await their replies, update
protocol-specific information, and change access permis-
sions. The exact states, transitions, and actions depend on
the coherence algorithm and the memory consistency
model.

To illustrate the complications in writing a protocol, con-
sider the home-side state machine of the Stache protocol
(Figure2). Conceptually, the protocol requires only three
states:Idle, ReadShared, andExclusive(a non-home pro-
cessor currently has the single valid copy.) Although transi-
tions appear asatomic, state changes in response to protocol
events cannot be atomic. Consider the transition from
Exclusive to ReadShared, which responds to a read request
by a processor. This transition can complete only when the
block’s previous owner relinquishes it. Conceptually, the
action for this transition sends an invalidation message and
awaits the block’s new value (Figure3a). However, to avoid
deadlock in a real system, protocol handlers must run to
completion and terminate. Handlers cannot wait on an asyn-
chronous event, such as a message arrival. Only the automa-
ton can wait for a protocol event to cause a transition.
Hence, after sending the invalidate message, the
ReadRequest handler changes to an intermediate state
(Excl-To-ReadShared) and terminates. When thePutRe-
sponse subsequently arrives, the transition completes by
changing to stateReadShared (Figure3b). Other states also
require intermediate states for their transitions. Figure4
shows the new, more complex state machine—which is still
a simplification of the actual protocol.

Intermediate states complicate programming because
they make transitions non-atomic. While in an intermediate
state, the protocol may receive messages other than the
expected reply message. For example, the stateExcl-To-

ReadShared waits for aPutResponsemessage. Before that
message arrives, the home node may also attempt to write
the same block and send aWriteFault message. The proto-
col programmer must consider these possibilities and pro-
vide theExcl-To-ReadShared state with a suitable action.

One unattractive approach is to receive these messages
and encode a block’s history, including pending actions, in
its state. For example, a block in stateExcl-To-ReadShared
receives aWriteFault message and moves to another state
Excl-To-ReadShared-Pending-WriteFault. When theRead-
Shared transition completes, the protocol processes the
pendingWriteFault. Because this approach greatly expands
the state space, protocols either encode this information in
an auxiliary data structure, negatively acknowledge (nack)
unexpected messages, or queue unexpected messages for
later processing. All three approaches have disadvantages.
An auxiliary data structure complicates programming,
because a programmer must remain aware that a block’s
state is split between two representations. Nacks can lead to
deadlock, so they must be employed carefully. And, queu-
ing requires additional memory. Teapot offers all three
options, but advocates queuing unexpected messages.

Message reordering in a network further adds to the
complexity, because messages may arrive in an unexpected
order. For example, aReadRequest from a processor that
already has a readable copy cannot be ignored or treated as
an error. The processor may have returned its copy with a
PutNoData message and subsequently requested a readable
copy with aReadRequest. If messages can pass each other,
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Figure 2: Idealized protocol state machine (home side).
Transitions are labeled with cause and, in parenthesis,
action.
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State Exclusive
Message ReadRequest(Node R)

Send(Owner, PutRequest);
AWAIT PutResponse;
SendSharedCopy(R);
State := ReadShared;
exit;

Figure 3: The action in box (a) executes the exclusive to
shared transition using synchronous (blocking)
communication, which could deadlock on a real system.
The action in box (b) shows an approach to avoiding
synchronous communication: it introduces an
intermediate state, which waits for a reply message.

State Exclusive
Message ReadRequest(Node R)

Send(Owner, PutRequest);
sharer := R;
State := Excl-To-ReadShared;
exit;

State Excl-To-ReadShared
Message PutResponse(Node R)

SendSharedCopy(sharer);
State := ReadShared;
exit;

(a)

(b)
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the seemingly gratuitiousReadRequest must be retained and
processed after thePutNoData message. Teapot, by default,
queues such messages for processing at a later time.

Another important consideration is that a protocol can be
difficult to modify, although this is a desirable way of devel-
oping a custom protocol. Consider adding aCom-
pare&Swap primitive to the basic protocol. This primitive is
a minor variation of aWriteRequestthat also executes the
compare and swap operation at a block’s home node once
the block becomesIdle. Tracking a pending Com-
pare&Swap complicates nearly every transition in a home
node state machine. The state machine-based implementa-
tion needs to test for this condition at 14 different places.1

3  Continuations and Protocols

This section describes our approach to writing handlers.
In general, any mechanism that permits multiple execution
contexts to coexist can solve the problem of synchronous
communication inside a handler without introducing
explicit intermediate states. Continuations, coroutines, and
threads2 are three such mechanisms.

Using threads, a protocol event handler can be launched
in a new thread, which yields control at a synchronous com-
munication point. When the subsequent response message
arrives, the thread is re-scheduled and runs to completion
(or to a later synchronous communication point). Corou-
tines can be used in a similar way.

Continuations can also support synchronous communi-
cation in the following way. Recall that a continuation cap-
tures the execution state of the current computation, and
passes the encapsulated state as an object to another compu-

1.  In C code, we used a flag in the protocol state associated with a block,
which is basically a doubling of existing states. Maintaining flags, how-
ever, is more tractable from a programmer’s point of view.
2.  These are light-weight, self-scheduling threads that yield control to each
other (through a scheduler), rather than true concurrent threads that can
potentially execute on multiple CPUs.

tation. The second computation can then resume the cap-
tured computation, often passing along a value.

Consider the example from the previous section.
Figure5 shows how to write the protocol transition with
continuations. The Teapot Suspend statement in the
ReadRequest handler is similar to acallcc. It passes the
current continuation (L, the first argument toSuspend) to
the function that is its second argument. The Teapot
Resume statement is similar to athrow, except that it
does not return a value.3 TheSuspend statement captures
its environment (the program position, as well as local vari-
ables) at the call point in its first argument, switches to the
subroutine state specified by the second argument, and
passes the continuation. At this point, the handler yields
control (to a dispatch loop), until an action in response to a
message to the subroutine state causes the suspended han-
dler to resume. Subroutine states are parameterized by a
continuation (e.g., theCont L parameter in Figure5b),
which is part of the environment of all handlers in the state.
A subroutine state differs from a normal state in two ways:
it is entered synchronously by aSuspend command in
another handler, and it can execute aResume command to
restore the environment and transfer control to the program
point captured by the continuation.

Using these mechanisms, a programmer need not split
the code in a handler into atomically executable fragments
when waiting for a particular message. However, as dis-
cussed in Section2, many protocol transitions are not sim-
ply a matter of awaiting a particular message—unexpected
messages may also arrive during the transition and need
action. These messages require an explicit intermediate
state in which the programmer handles all messages that
may arrive while waiting for a particular event.

An attractive benefit of continuations is that they allow
reuse of such intermediate states between different transi-
tions by providing the notion of calls between states. A sub-

3.  This is in keeping with the imperative nature of Teapot. Each block has
a global “info” area available, which can be used to communicate values.
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Figure 4: State machine (home side) with intermediate
states necessary to avoid synchronous communication.

State Exclusive
Message ReadRequest (Node R)

Send(Owner,PutRequest);
Suspend(L,AwaitPutResponse{L});
SendSharedCopy(R);
State := ReadShared;
exit;

...

State AwaitPutResponse(Cont L)
Message PutResponse

Resume(L);
exit;

...

Figure 5:  Using continuations to avoid introducing new
states. State AwaitPutResponse is used as a
subroutine state.

(a)

(b)
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routine state (such asAwaitPutResponse) is oblivious
to the state from which it was invoked and the state to which
it goes next, since the continuation contains this informa-
tion. Thus, the state can be a subroutine for all transitions
that await and anticipate the same message(s) and perform
the same actions in response to those messages. By contrast,
a state machine requires each handler to have a distinct
intermediate state to encode subsequent transitions. Subrou-
tine calls permit significant code reuse in real protocols, as
the action codes effecting transitions between states are fre-
quently identical. For example, in the Stache protocol, the
four different handlers that wait for aPutResponse message
share a single subroutine state. More complex protocols
(LCM in Section6) presented even more code reuse oppor-
tunities. In effect, continuations turn a finite-state automa-
ton into a push-down automaton.

Continuations can nest: a subroutine called from aSus-
pend can itself invoke anotherSuspend. A stack1 of con-
tinuations offers a convenient mechanism to record
incomplete tasks. In a state machine, waiting for a succes-
sion of messages requires new intermediate states. By con-
trast, a function called fromSuspend can itself suspend
for another message. This provides a useful abstraction for
processing a series of messages M1 and M2 since the code
in AwaitM1 can execute aSuspend(AwaitM2). For
example, in the Stanford DASH coherence protocol [19], a
home node returns aWriteResponse that requires the writer
to wait for Invalidation-Acks from the current readers. With
this mechanism, the handler processing the response can
directly Suspend to wait for the next acknowledgment.
This feature was used several times in the LCM protocol.

Figure6 shows how continuations simplify adding a
Compare&Swap primitive to the Stache protocol. It con-

1.  This is not to imply thatResumes should dynamically match the corre-
sponding Suspends; however, all Suspends must eventually be
Resumed (or otherwise deallocated) to prevent memory leaks, as there is
no built-in garbage collection.

tains code that handles a message to a home node for a
block inReadShared state. The handler first invalidates out-
standing copies and then invokes the transitionReadShared-
To-Idle. Then, it performs the actualCompare&Swap opera-
tion. Similar changes (not shown) are necessary in states
Idle andExclusive. If the Compare&Swap message arrives
in any other state, Teapot automatically queues it until the
block enters a state that can process the message. The Tea-
pot code, unlike a state machine, forces the transition to the
Idle state by a subroutine-like mechanism, rather than
encoding the pendingCompare&Swap operation in the state
until it can be executed in a transition into theIdle state.

A state, subroutine or normal, waits for and processes a
limited collection of messages. All other messages can be
queued for delivery after a transition out of the state—or
discarded or nack’ed, as a programmer chooses. Teapot
does not impose a general solution to the problem of unin-
tended messages, because different protocols have different
needs. However, Teapot provides general mechanisms that
permit a programmer to specify: which messages should be
processed in a state, how to handle other messages that
arrive, and what to do with these unintended messages. In a
subroutine state (such asAwaitPutResponse in
Figure5) that waits for a reply message to complete a tran-
sition, a programmer typically specifies a limited set of
messages that should be processed immediately and defers
the others (by enqueuing them) until the transition com-
pletes.

In order to convert a handler containing blocking calls
into non-blocking code, the Teapot compiler captures a han-
dler’s environment immediately before aSuspend
(Section5). Teapot continuations are not fully general: calls
to Suspend can appear only in a handler’s body and not in
an external procedure called from a handler. This reduces
the state that must be captured to only the local variables of
the calling routine, and thus facilitates optimizations.

In principle, we could have achieved the same effect by
providing a light-weight threads package to the program-
mer. However, continuations are a higher-level language
feature and lend themselves more readily to compiler opti-
mizations.

4  Teapot Language

Teapot is best introduced by a code fragment from the
Stache protocol (Figure7 and Figure8). Note that this is the
complete, executablecode for those states: no details are
elided. This code implements the protocol messages gov-
erning a block inReadOnly state on a non-home processor.
If the processor attempts to write to the block, Tempest
sends a protocol eventWR_RO_FAULT. The action for this
event first sends anUPGRADE_REQ to the home node and
then Suspends, calling the subroutine state
Cache_RO_To_RW. Later the code for

State ReadShared
Message Compare-N-Swap (Node n,

Address a,
Value old_val,
Value new_val)

...
Suspend(L, ReadShared-To-Idle{L});
If (*a == old_val) Then

*a := new_val;
Send(n, Compare-N-Swap-Success);

Else
Send(n, Compare-N-Swap-Failure);

Endif
exit;

Figure 6: Adding Compare&Swap to Stache protocol. The
code in this figure shows the code for the ReadShared
state. Similar changes are required to Idle and Exclusive
states.
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Cache_RO_To_RW executes aResume statement, which
restarts the suspended handler, which in turn restarts (wakes
up) the original computation thread that faulted.

StateCache_ReadOnly (Figure7) explicitly handles
only theWR_RO_FAULT andPUT_NO_DATA_REQ mes-
sages. All other messages pass to theDEFAULT code,
which raises an error since other messages are erroneous in
this state. Figure8 shows the subroutine state
Cache_RO_To_RW. The home node responds to an
UPGRADE_REQ with one of two messages, hence the state
must be prepared to handle both. In this state, theDEFAULT
case enqueues all other message for later processing.

The operationResume(C) takes a continuation and
restarts the suspended handler (after restoring its environ-
ment). Notice the continuation parameter (C) in this state’s
definition. This argument is bound to the continuation
passed at theSuspend in the previous handler (State
Cache_ReadOnly, MessageWR_RO_FAULT, in our
case). If a message handler in this state contained aSus-
pend operation, the variableC would also be saved and
restored. In this way, Suspends nest dynamically, like
callcc in ML or Scheme.

In addition to continuation statements, Teapot handler
bodies can contain conventional imperative constructs:
assignments, procedure calls, conditionals and while loops.
Handler bodies are typically short.

Teapot supports basic integer and boolean types and
includes a facility for declaring compound types and proto-
types of functions that manipulate values of those types.
Datatypes must be abstract because the Teapot system
derives C code and MurΦ code from the same protocol
specification. MurΦ’s types are far more limited than C’s
[9]. Consider maintaining a list of processors in a data struc-
ture that supports operations such as include-sharer, delete-
sharer, etc. A C implementation could keep a bit vector in a
word and implement operations with efficient logical opera-
tions. MurΦ, on the other hand, represents the same infor-
mation as an array of BitType, where BitType is a
enumerated type of two values. To support both targets, a
Teapot program does not specify the implementation of a
data structure. Instead, these programs declare abstract
types, e.g., SharerList. As a result, a Teapot specification is
neither a complete C program, nor a MurΦ program. The
programmer must instantiate abstract data types by defining
concrete representations and functions. In addition, some
system-level issues, such as obtaining a proper dispatch
function for both the C and the MurΦ code, are omitted
from this paper since they are routine and reusable for dif-
ferent protocols.

Appendix A presents the Teapot grammar.

State Stache.Cache_ReadOnly{}
Begin

Message WR_RO_FAULT (id: ID;
Var info: INFO;
home: NODE)

Begin
Send(home, UPGRADE_REQ, id);
Suspend(L, Cache_RO_To_RW{L});
WakeUp(id);

End;

Message PUT_NO_DATA_REQ (id:ID;
Var info:INFO;
home: NODE)

Begin
Send(home, PUT_NO_DATA_RESP, id);
SetState(info, Cache_Inv{});
AccessChange(id, Blk_Invalidate);

End;

Message DEFAULT(id: ID;
Var info: INFO;
home: NODE)

Begin
Error(“Invalid msg %s to Cache_RO”,

Msg_To_Str(MessageTag));
End;

End;

Figure 7: Teapot example from the Stache protocol.
Continued in Figure 8.

Figure 8:Teapot example continued from Figure 7.

State Stache.Cache_RO_To_RW{C:CONT}
Begin

Message UPGRADE_ACK (id: ID;
Var info: INFO;
home: NODE)

Begin
SetState(info, Cache_RW{});
AccessChange(id, Blk_Upgrade_RW);
Resume(C);

End;

Message GET_RW_RESP (id: ID;
Var info: INFO;
home: NODE)

Begin
RecvData(id, Blk_Upgrade_RW);
SetState(info, Cache_RW{});
Resume(C);

End;

Message DEFAULT(id: ID;
Var info: INFO;
home: NODE)

Begin
Enqueue(MessageTag, id, info, home);

End;
End;
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5  Compilation

Teapot code could be compiled to use light-weight
threads in whichSuspends andResumes would cause
saves and restores of thread contexts. Since we restricted
our input language, the generality of threads is unnecessary.
First,Suspends occur only at statement level (by contrast
call/cc can occur anywhere in an expression). Second, a
Suspend cannot appear in a function called from the main
handler. Given these restrictions, a handler written with
Suspends andResumes can be directly compiled into
non-blocking event handlers, without multiple stacks.

To illustrate the process, we will apply source-level
transformation to the handler in Figure9. The compiler first
transforms the handler into two routines (Figure10), the
first of which includes code up to theSuspend and the
second that includes the remaining code. AResume state-
ment simply extracts the function pointer from the continua-
tion record and calls the second function. This
transformation works even if Suspend statements occur
within control structures (nested loops and conditionals).
The first fragment runs through theSuspend then exits the
handler routine. The code for the second part starts after the
Suspend. Well-structured programs—all Teapot pro-
grams—can always be split this way.

An optimization is to save and restore in the continuation
only values that are referenced after theSuspend. Often in
a handler, no values are saved and restored, so that a contin-
uation can be statically allocated and used by all handler
invocations. Furthermore, the compiler detects if a constant
continuation reaches a particularResume site. If so, the
code from the handler can be in-lined at theResume site.
This optimization is similar toβ-contraction, as discussed
by Appel [2], and has proved effective in our experiments .

6  Case Studies

 Previous sections presented several examples from the
Stache protocol. We wrote the Stache protocol in Teapot
(600 lines, which compiles to 1000 lines of C code) and
compared its performance against the original, hand-writ-
ten, state machine implementation (approximately 1000

lines of C). Table1 contains performance evaluation of four
benchmarks running under the Stache protocol (on a 32 pro-
cessor CM-5 running Blizzard-E [24]). The second column
reports the application running time (millions of cycles) for
the hand-written C protocol. The next two columns report
times for unoptimized and optimized Teapot protocols. In
the unoptimized results, the compiler performs live variable
analysis but not the constant continuation optimization. The
optimized numbers show the times when the compiler per-
forms both live variable analysis and the constant continua-
tion optimization. The next column reports the number of
continuation and queue records allocated and freed on all
nodes. The last column reports the average time across
nodes spent waiting for faults and message handlers in the C
state machine. This number is a measure of the communica-
tion overhead of a program. It, however, is not a true mea-
sure of the time spent in protocol processing, because
running a handler while waiting for an earlier fault adds no
overhead. This number puts the performance overhead of
Teapot in proper perspective.

The optimized Stache protocol ran 5-10% slower than
the C version. The constant continuation optimization, how-
ever, effectively reduced the number of continuations and
improved execution time of programs that allocate a dispro-
portionate number of continuations on a few processors
(because of memory reference patterns). We will shortly
return to the issue of performance difference between the
Teapot and state machine versions.

Figure 9: A sample handler, with a Suspend point. The
compiled code is in Figure 10.

Message HANDLER1(arg1: T1; arg2: T2)
Var

l1,l2: T3;
Begin

stmt1
stmt2
Suspend(L, NewState{L});
stmt3
stmt4

End;

Message HANDLER1(arg1: T1; arg2: T2)
Var

l1,l2: T3;
Begin

stmt1
stmt2
L := AllocContinuation ();
L.funcPtr := HANDLER1_after_L;
Save arg1, arg2, l1, l2 in L;
Put L in environment;
State := NewState;
exit;

End;

Message HANDLER1_after_L(L: CONT)
Var

arg1: T1;
arg2: T2;
l1,l2: T3;

Begin
Restore arg1,arg2,l1,l2 from L;
FreeContinuation (L);
stmt3
stmt4
exit;

End;

Figure 10:Code generated for the handler in Figure 9.

(a)

(b)
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We believe that most new protocols will be variants of
existing ones. For example, we implemented a variant of the
Stache protocol that attempts to overlap the latency of
acquiring a writable copy of a cache block with future com-
putation by buffering writes until a synchronization point.
The modifiation to Stache code involved adding 4 new
states, 4 new message types, and some support routines.
This protocol requires an application to have the synchroni-
zation needed by the weakly consistent memory model [1].
Since we did not have a state machine-based implementa-
tion, we are unable to present comparative performance data
for this protocol.

LCM is a far more complex protocol [18]. It exploits
controlled inconsistency in phases of parallel programs and
has been used as run-time support for languages that require
copy-in-copy-out semantics for parallel loops. When a pro-
gram enters an LCM phase, each processor can obtain a
copy of a location that is not kept consistent. A node can
access its copy without affecting another processor. At the
end of the LCM phase, each node with a copy reconciles its
modifications with other nodes, so that the system returns to
a consistent state. Figure11 shows how Teapot facilitates
handling a complex network reodering problem that arises
in the LCM protocol.

The LCM protocol in Teapot (1500 lines) compiled to
approximately 2300 lines of C code. The state machine
implementation of LCM protocol required approximately
2500 lines of C. Table2 contains performance numbers for
three benchmarks running under the LCM protocol. With
optimizations, the LCM protocol performed comparably
with the state machine version in most cases tested.

Because of Teapot, we were able to implement easily
three variants of LCM: one that eagerly sends updates to
consumers at the end of an LCM phase (LCM-Update),
another that manages multiple, distributed copies of some
data as a performance optimization (LCM-Mcc), and a ver-
sion of LCM that incorporates both (LCM-Both) of these
changes. Again, equivalent state machine versions of these
protocols were not available for a performance comparison.

We found it very difficult to isolate the factors that would
account for the performance difference between the Teapot
and state machine protocols. In particular, CM-5 processors
have small (64Kb), unified, direct-mapped caches, which
can exaggerate the effect of small increases in code and
local data. In addition, the SPARC register windows can
penalize Teapot handlers since they add a level of indirect
function call at all handlers1.

To understand better the performance differences, we
used a detailed architectural simulator of a multiprocessor
that implements the Tempest interface. The simulated
machine differs from the CM-5: it has larger (256Kb) data
caches and unlimited register windows. Experiments with
the Stache protocol showed that Teapot versions were con-
sistently within 5% of the execution times of the state
machine versions. Simulator statistics also show that event
counts and the times spent in the two versions are compara-
ble. Teapot overheads in message handler invocations
account for the remaining difference.

1.  In the LCM benchmark that performed worst, the performance differ-
ence was reduced to within 6% by avoiding (via hand-coding) the use of
register windows at one call site.

Table 1: Performance of Teapot system with Stache protocol.

Benchmark

Execution Time in cycles (% increase over C code)

Allocs in Opt/
Allocs in UnOpt Fault timeC State Machine

Teapot
Unoptimized

Teapot
Optimized

gauss 1930 M 2150 M (11.4%) 2050 M (6.2%) 65.7K / 551K 40%

appbt 1860 M 2100 M (13%) 1990 M (7%) 19.9K / 1197K 36%

shallow 1160 M 1310 M (13%) 1280 M (10%) 0.3K / 1001 K 44%

mp3d 2210 M 2340 M (5.9%) 2320 M (5%) 443 K / 3249 K 72%

Table 2: Performance of Teapot system with LCM protocol.

Benchmark

Execution Time in cycles (% increase over C code)

Allocs in Opt/
Allocs in UnOpt Fault timeC State Machine

Teapot
Unoptimized

Teapot
Optimized

adaptive 3301 M 3440 M (4.2%) 3376 M (2.3%) 124 K / 4410 K 28%

stencil 3717 M 4120 M (10.8%) 3859 M (3.8%) 3347 K / 7452 K 63%

unstruct 1431 M 1710 M (19.4%) 1666 M (16.4%) 62 K / 2572 K 38%
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Figure 11:This figure shows a network reordering problem occuring at several places in LCM. The cache (non-home)
side sends the home a BEGIN_LCM message indicating that it is entering LCM phase. The message reaches the home
after two other messages. The Teapot code on the right handles this scenario by going to an AwaitBeginLCM state. Note
the queuing of GET_RO_REQ.

State LCM.Home_Excl{}
Message PUT_ACCUM(...)
Begin

...
Send(src, PUT_ACCUM_ACK);
Suspend(L,Home_Await_BEGIN_LCM{L});
State := Home_LCM;
...

End;
...

State LCM.Home_Await_BEGIN_LCM{C:CONT}
Message BEGIN_LCM(...)
Begin

...
Resume(C);

End;

Message DEFAULT(...)
Begin

Enqueue(...)
End;
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7  Verification

Several techniques can verify the correctness of a proto-
col by ensuring that it does not violate a set of invariants.
Model checking by exhaustive state-space exploration is a
popular technique in hardware cache-coherence community.
The MurΦ system, built by Dill et al. at Stanford University,
uses this technique. A MurΦ program specifies an initial
state, a set of rules, and a set of invariants. Rules fire only if
their preconditions are satisfied. When a rule fires, an action
code executes and the system’s state changes. MurΦ uses a
Pascal-like input language to express conditions and
actions. It selects the firing rule non-deterministically from
the enabled rules, which permits simulation of asynchro-
nous events. MurΦ explores all possible interleavings of
events in a breadth-first fashion (although it has options for
different search strategies) and checks that the invariants
hold in every state. Should an assertion fail, MurΦ produces
a trace of events leading to the erroneous state.

In general, MurΦ requires a programmer to write a pro-
tocol twice, once in an executable form and once in MurΦ’s
specification language. Writing a MurΦ specification
requires significant effort. Our hand-coded specification of
the Stache protocol was approximately 800 lines of MurΦ
code. In addition, verifying a specification—rather than an
executable protocol—can hide errors arising from the dif-
ferences between the two.

To solve this problem, Teapot automatically generates a
MurΦ specification from a Teapot protocol. Since a single
source produces both verification and executable code, the
MurΦ specification accurately captures the behavior of the

executable code. In addition, Teapot saves the effort of writ-
ing a separate specification. However, a protocol writer
must supply support routines that define data structures in
MurΦ’s input language and an event generation loop that
generates a random sequence of events for which the proto-
col must work corectly. For example, in the Stache protocol,
each node should process any stream of loads and stores to
any shared addresses. For the Buffered-write protocol, each
node must handle synchronization operations randomly
interleaved with the loads and stores. To further check the
correctness of values in the shared memory, a more stylized
event generation loop is necessary, as the values will be con-
sistent only if loads and stores obey a discipline [1] with
respect to synchronization operations. Event generation for
Stache and Buffered-write protocols required about 50 and
100 lines respectively of MurΦ code. LCM protocol event
generation is quite complicated—it took about 400 lines of
MurΦ code.

One problem with model checking is limiting the size of
the state space that must be explored. In general, we simu-
lated a minimal machine with 2 processor nodes and 2
shared memory addresses. Also, our verifications did not
test actual data values. We currently verify that a protocol
does not deadlock and that it does not receive a message
that is not anticipated in a given state. Additional assertions
can be verified as needed, but have not proven necessary.

Our experience with MurΦ has been very good. It found
errors in a reasonable amount of CPU time (typically within
an hour on a 66 Mhz SparcStation with 150M memory). It
even uncovered an unsuspected protocol bug in a heavily-
used implementation of the Stache protocol, which could
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occur under a particular interleaving of messages in the net-
work. Table3 lists the verification times on a 66 MHz Sparc
with 150M of memory for each of the protocols we wrote.

MurΦ proved even more valuable for complex proto-
cols1, such as LCM. The original, hand-written LCM proto-
col contained numerous bugs that consumed months of
effort to fix, and that continually re-emerged as the protocol
evolved. MurΦ uncovered approximately 25 errors in the
Teapot LCM specification.2 After verifying the Teapot code
for LCM, we ran the automatically generated C code on
several applications with little effort. The remaining prob-
lem was an error in a support function that was not verified.

Model checking technology will doubtlessly improve
and allow larger protocols and systems to be checked.
Researchers are exploring techniques that exploit symmetry
or domain-specific knowledge [22] to make systems less
dependent on a brute-force exploration of a state space. Tea-
pot is poised to benefit from the progress in this area.

8  Related Work

Distributed shared memory (DSM) systems are an active
area of research since Li's first system [20]. Most systems
focus on a single general-purpose protocol that, hopefully,

a. Out-of-order messages increase the number of states that
MurΦ has to explore. We limited the amount of reodering in
the simulated network, because unrestricted reordering (i.e.,
any number of later messages along a channel can cross an
earlier message) led to impractical simulation sizes.

1.  MurΦ simulating LCM had hundreds of times as many configurations
as when simulating Stache.
2.  With the limited memory available, we could only verify LCM with 2
processor nodes, 1 address, and maximum network reordering of one. Ver-
ification of either 2 addresses or more network reordering did not com-
plete, although MurΦ did not report new errors for as long as it ran.

is efficient for a wide range of programs. Munin [5] was the
first DSM system to support a limited collection of proto-
cols intended for different sharing patterns. Recent systems
[17, 23] take a different approach and expose the primitives
necessary to implement a coherence protocol. Distributed
object systems [3, 6, 16] also provide primitives to support
different object coherence protocols. Teapot is not tied to a
particular system and could be used with any of them.

Our work most closely resembles the PCS system by
Uehara et al. at the University of Tokyo [25]. They
described a framework for writing coherence protocols for
distributed file system caches. Unlike Teapot, they use an
interpreted language (implemented on Tcl!). Like Teapot,
they write protocol handlers with blocking primitives and
transform the program into a message-passing style. Our
work differs in several aspects. Teapot's continuation
semantic model is more general than PCS's, which is a mes-
sage-driven interpretation of a protocol specification. PCS's
application domain is less sensitive to protocol code effi-
ciency, so they do not explore optimizations. Finally, we
exploit verification technology by automatically generating
an input specification for the MurΦ verification system.

Wallach et al. propose Optimistic Active Messages [26]
that permit the use of blocking primitives inside handlers.
They detect at runtime whether a handler involves a block-
ing primitive; and if so, they launch a separate thread in
which to rerun the handler.

Synchronous programming languages, such as
ESTEREL [4], are useful for describing reactive systems
and real-time applications. Teapot resembles ESTEREL in
that it provides a specification of the control part of the pro-
tocol, leaving data manipulation to separately written (often
in C) support routines. Like ESTEREL, Teapot supports
verification and can be translated to executable code. Teapot
differs from ESTEREL in that its emphasis is on simplify-
ing the task of programming complicated finite-state
machines.

Continuations can express coroutines [13] and parallel-
ism [12, 27]. However, few domain-specific languages
exploit continuations, perhaps because of concerns about
their implementation complexity and cost. Teapot demon-
strates that a restricted form of this feature can be imple-
mented easily and efficiently, without losing its benefits.

Draves et al. [10] used continuations to implement thread
management and communication in an operating system.
They found many benefits, including reducing the number
of kernel stacks from one per thread to one per processor,
and unifying implementations of diverse control transfer
operations, such as exception handling, preemptive schedul-
ing, and user-level page faults.

The networking community has developed a number of
approaches to validating protocols. Besides temporal logic,
they also use model-checking techniques based on state-
space exploration [15, 21]. To the best of our knowledge,

Table 3: Protocol verification times

Protocol Configuration Time Taken

Stache 2 nodes, 2 addresses

1 reordering maxa
4900 seconds

Buffered-
Write

2 nodes, 1 address

1 reordering max

302 seconds

LCM Simple 2 nodes, 1 address

1 reordering max

11515 seconds

LCM Mcc 2 nodes, 1 address

1 reodering max

5804 seconds

LCM Update 2 nodes, 1 address

1 reordering max

8745 seconds

LCM Both 2 nodes, 1 address

1 reodering max

1104 seconds
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most of their programming models are based on state
machines and do not use continuations.

Wing et al. [28] present an eloquent case for using model
checking technology with complex software systems, such
as a distributed file system coherence protocols. We also use
model checking technology, but our primary focus is on a
language for writing coherence protocols, and on deriving
executable code as well as the verification system input
from a single source. They write the input to the model
checker separately from their code, which introduces the
possibility of errors.

9  Conclusion

Many programming language features are developed and
explored in general-purpose programming languages and
rarely find their way into domain-specific languages. This
paper provides a counter-example by showing how ideas
such as continuations can flow back into a special-purpose
language that supports the process of writing and verifying
memory-system coherence protocols. These protocols are
important to the programming languages community
because they facilitate parallel programming and provide an
efficient basis for implementing languages and compiler
run-time systems.For more information about Teapot,
please visit the URL http://www.cs.wisc.edu/~wwt/teapot.
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Appendix A: Teapot grammar
program:

modules protocol states
modules:

[ module]*
module:

module id begin mod-decls end ;
mod-decls:

[ mod-decl]+
mod-decl:

type id ;
sub-decl
const id : id ;

sub-decl:
function id ( sub-argsopt ) : id ;
procedure id ( sub-argsopt ) ;

protocol:
protocol id begin prot-declsopt end ;

prot-decls:
[ prot-decl ]+

prot-decl:
var id : id ;
const id := id ;
state id ( state-argsopt ) transientopt ;
message id ;

states:
[ state]+

state:
state id . id ( state-argsopt ) begin msgsend

;

state-args:
state-arg [ ; state-arg ]+

state-arg:
vars : id

msgs:
[ msg]+

msg:

message id ( sub-argsopt ) block-declsopt begin
stmts end ;

sub-args:

sub-arg [ ; sub-arg ]+

sub-arg:

var vars : id

vars : id

block-decls:

var [ var-decl ]+

var-decl:

vars : id ;

vars:

id [ , id ]*

stmts:

ε
stmt ; stmts

stmt:

if ( expr ) then stmts else stmtsendif

if ( expr ) then stmts endif

while ( expr ) do stmts end

id ( exprs )

id := expr

suspend ( id , stmt )

resume ( id )

return expr

return

print ( exprs )

exprs:

ε
expr [ ; expr ]*

expr:

expr sym-id app-expr

app-expr

app-expr:

id ( exprs )

id { exprs }

atomic-expr

atomic-expr:

id

const

( expr )


