Appears inSIGPLAN Confance on Rsgramming Languge Design and Implementation (PLDI), May 1996

Teapot: Language Support &r Writing Memory Coher ence Potocols

Satish Chandra, Brad Richards, and James R.Larus

Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton St.
Madison, WI 53706 USA

{chandra, richards, |

Abstract

Recent shad-memory paallel computer systemsfef the
exciting possibility of customizing memory cadrese poto-
cols to fit an applicatios semantics and sharing patterns.
Custom potocols have been used tchéave messge-pass-
ing performance—whileetaining the cowenient pogram-
ming model of a global addss space—and to implement
high-level languae constructs. Unfortunatelycoheence
protocols written in a corentional languge sut as C ae
difficult to write delug, undestand, or modifyThis paper
describesTeapot, a small, domain-specific langga for
writing coheence potocols. €apot uses continuations to
help reduce the comptéy of writing potocols. Simple
static analysis in theebpot compiler eliminates muof the
overhead of continuations andsults in potocols that run
nearly as fast as hand-written C code Teapot specifica-
tion can be compiled both to arezutable cohence poto-
col and to input for a modeheding system, whitpermits
the specification to be verified.eWeport our &periences
coding and verifying seral protocols written in &apot,
along with meas@ments of thewerhead incured by writ-
ing a piotocol in a higheflevel languae.
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1 Introduction

A shared-memory coherence protocol manages the repli-
cation of data, to ensure that a parallel program sees a con-
sistent viev of memory In general, a coherence protocol
ensures consisteypovhen a processor writes to a shared
location either by ivalidating outstanding copies or by
updating copies with the nevalue. A protocol can deter-
mine, to a lage tent, the performance of a shared-memory
program, since communication occurs through loads and
stores to shared data. A mismatch between a protocol and
an applicatiors sharing pattern leads tmoessve commu-
nication. Br example, iwalidation protocols perform
poorly for produceconsumer sharing, sincevalidating
outstanding copies forces the consumers to re-request data,
which requires up to four protocol messages for a small data
transfer [7].

Recent shared-memory architecturesvjgte, to \arying
degrees, the flability of tailoring a coherence protocol to
better fit an applicatior’ needs. Anample of such an
architecture, the one on which thionk is based, is the
Tempesinterface, a specification of the mechanisms neces-
sary to implement shared-memory coherence protocols at
userlevel, i.e., as unpviledged code running in an applica-
tion program [14, 23]. \th Tempest, an application pro-
grammer can either use a ready-made shared-memory
protocol from a library or construct a customized shared-
memory protocol that suits an applicat®meeds, thereby
achieving higher performance [11]. Compiler writers can
gxploit custom coherence policies as welbr Example, a
recent paper shved hav a custom protocol (LCM) enables
a compiler to use a fine-grain, gepn-write mechanism to
implement a languagecoy-in, copy-out semantics, with-
out being limited by conseative pointer analysis [18].

Unfortunately Tempest mechanisms arendevel and
protocols can be ditult to write, delng, and modifyWrit-
ing coherence protocols in an ad-hoc manner (as C pro-
grams) artificially limits the number of programmers
willing or able to deelop custom protocols. This paper



addresses the problem with amnkanguage, calledéegapot, input for the Mug [9] verification system (Sectior). Pro-

that supports both writing ancesifying coherence proto-  tocol \erification has been one of the greatest benefits of
cols. By reducing the complity of developing nev proto- this system, as it has reduced the time te@kip a comphe
cols, Teapot increases the attraetiess of systems, such as protocol by an order of magnitude.

Stanford Flash [17], Wconsin §phoon [23], and Blizzard

[24], that implement protocols in soféine. Protocols writ-

ten in Teapot could also be used for distitibd object sys- )
tems, such as Multipol [6], CRL [16], and Orca [3]. 2 Why are coheence thOCOIS hard

The main dificulty in writing a co_herence protocol is_the A shared-memory system can bailbon two basic
requirement that all protocol actions (codee@ited in mechanisms. The first mechanisatcess condi, allows
response to a protocolent, such as a read miss or an he system to control access to memory by permitting read
incoming message) run to completion before relinquishing g4 write accesses only foalid, cached data. Reading or
the processor toxecute protocol code for other cache \yiting an ivalid location or writing a alid but read-only

blocks. Action code, heever, frequently needs to eage in location must cause aaccess fauland ivoke the coher-
blocking communication, e.g., sending a request message tQnce protocol. The second mechanistommunication
another node andaiting a reply To circument this prob-  gnaples a system to transfer control information and data

lem, protocol programmers introduce intermediate states i”among Processors.
their finite state machines. A protocalats a reply mes- .
sage by shifting into an intermediate state and relinquishing. A protocol comes into play ‘.'ﬂ an acceasit. |t must .sat-
the processorThe intermediate state handles the message'SIcy the memory access by bringing the data to duing

on its arrval, and then goes to the destination state (one thatpgoﬁezsgst Tneggr)rlw Ir;] rg:hry tprOt?c;?]ISt’ each bIOth Otfh
reflects the werall efect of the protocolent). The result- shared data ha € nodenhat coordinates accesses fo e

ing proliferation of states complicates protocols, because block. The accessing processor S ends a request to the refer-
enced blocls home processowhich performs booldep-

non-atomic transitions force a programmer to reason abou ing and returns the data. on ; r obtains the dat
the interaction between all messages and each state. In pra&—g and returns the data. nce a processor optains the data,

tice, protocols written in this style are fiifilt to delug or !t gach|¢§ ? ?&Whmh ctan ble sfubsequelntly ac;tesshed until it
modify. Detailed discussion of coherence protocols and ;sm\l/alzsae f ary prohoco Sy otr) Eamp gt?ur alc © pTO'I
their complications appears in Sectin oco [23], en orce conerence by permitling only a single
i writer (or multiple readers) to a block. When a home node
Teapot allos a programmer to suspend an action han- yocejes 4 request for a writable gopf a block, it ivali-
dler and wait an asynchronous/ent by calling a witing dates the outstanding copies before returning the block. The
function with the current continuation (Secti®nand

- ) ) memory reference and the request andlidation mes-
Sectiond). Teapot also permits the programmer to concisely sages ar@rotocol erents which cause transitions in a pro-
specify hav to handle other messages thatvarivhile wait- tocol state machine.

ing. The Bapot compiler transforms the handler with sus- Both the h d d hi q
pending calls into atomicallyxecutable pieces that can run oth the home node and caching processors record state
for a block. At a protocolwent for blockB, the protocol

without causing deadlock. Analysis and optimization in the 8 - ) X
consultsB's state to determine an action, which may send

Teapot compiler (Sectids) eliminates most of thever-
head incurred by writing protocols at a higheveleof messages and update both the state and the contents of the
abstraction block in memory For example, Figurel depicts states in a

' simple protocol for a block at a non-home node (Figure

.tSectlonGIprestentsl o?rxqi)ﬁneé]l@ Wgh ustmg é—azeloFtl;?/ shavs the corresponding home node state machine.) Con-
write se/éral protocols for the Blizzard system [24]1 sider a block that is initiallynvalid. When the processor
optimization disabled, our compiler generates protocol code

in C that runs application programs within 13% of the speed load (obtain readable copy)
of a hand-written protocol. ith optimization enabled, the “—— — . (Readable
/4 invalidate msg (acknowledge)
S

performance is ¢ecept for one program) within 10% of the
corresponding hand-written protocol, which ery attrac-
tive given the wastly superior protocol writing gmonment.

Even with better programming abstractions, protocols
can be dificult to write correctly Field testing cannot
ensure correctness since protocols contain codripteng-
dependent paths. Although completebrifying a nontn-
ial protocol is dificult, model checking through state space
exploration has emged as a viable dafjging aid for com- Figure 1: Idealized protocol state machine (non-home
plex protocols [8, 9, 22, 28]. In addition txexutable C side). Transition are labeled with cause and, in
code, the back-end of theedpot compiler can generate |parentheses, action.




ReadRequest (get readable copy)
< —— —(RdShare
Ack (reader relinquishes copy)

Figure 2: Idealized protocol state machine (home side).
Transitions are labeled with cause and, in parenthesis,
action.

reads the block, the protocol obtains a read-only éagm

the home node and changes its statedadable Later the
home node may walidate the copwith aninvalidate mes-
sage, which causes a transition to statalid. Simulta-
neously the blocks access permissions are changed so
subsequent reads or writes cause an acaahs f

In general, actionsxecute on transitions between states,
which are caused by protocovemts. Actions may send
messages to other processomsaia their replies, update
protocol-specific information, and change access permis-
sions. The xact states, transitions, and actions depend on
the coherence algorithm and the memory consigtenc
model.

To illustrate the complications in writing a protocol, con-
sider the home-side state machine of the Stache protoco
(Figure2). Conceptuallythe protocol requires only three
states:ldle, ReadShard, andExclusive(a non-home pro-
cessor currently has the singlaid copy.) Although transi-
tions appear aagtomic,state changes in response to protocol
events cannot be atomic. Consider the transition from
Exclusiveto ReadSha¥d, which responds to a read request
by a processoiThis transition can complete only when the
block’s previous avner relinquishes it. Conceptuallyhe
action for this transition sends arvafidation message and
awaits the blocls nev value (Figure3a). Havever, to avoid
deadlock in a real system, protocol handlers must run to
completion and terminate. Handlers cannaitwn an asyn-
chronous eent, such as a message\ati Only the automa-
ton can wvait for a protocol eent to cause a transition.
Hence, after sending the validate message, the
ReadRequeshandler changes to an intermediate state
(Excl-To-ReadShard) and terminates. When thieutRe-
sponsesubsequently awés, the transition completes by
changing to statReadShard (Figure3b). Other states also
require intermediate states for their transitions. Figure
shaws the na, more comple state machine—which is still
a simplification of the actual protocol.

Intermediate states complicate programming because

they male transitions non-atomic. While in an intermediate
state, the protocol may regei messages other than the
expected reply messageor~example, the stat&xcl-To-

ReadShard waits for aPutResponsenessage. Before that
message awnes, the home node may also attempt to write
the same block and send\iteFault message. The proto-
col programmer must consider these possibilities and pro-
vide theExcl-To-ReadShaed state with a suitable action.

One unattractie approach is to ress these messages
and encode a block’history including pending actions, in
its state. Br example, a block in statéxcl-To-ReadShad
receves aWriteFault message and mes to another state
Excl-To-ReadShad-Rending-Writelault. When theRead-
Shaed transition completes, the protocol processes the
pendingWriteFault. Because this approach greatkpands
the state space, protocols either encode this information in
an auxiliary data structure, gegively acknevledge (nack)
unexpected messages, or queue xpeeted messages for
later processing. All three approachesehdisadantages.

An auxiliary data structure complicates programming,
because a programmer must remawvar@ that a block’
state is split between twepresentations. Nacks can lead to
deadlock, so themust be emplged carefully And, queu-
ing requires additional memoryleapot ofers all three
options, it adwcates queuing urpected messages.

Message reordering in a netek further adds to the
compl«ity, because messages mayvariin an ungpected
order For example, aReadRequedrom a processor that
already has a readable gopannot be ignored or treated as
an error The processor may V& returned its cgpwith a
EutNoDatamessage and subsequently requested a readable

opy with aReadRequestf messages can pass each gther

St at e Exclusive
Message ReadRequest(Node R)
Send(Owner, PutRequest);

AWAI T PutResponse;
@ b

SendSharedCopy(R);
State := ReadShared;
exit;

St at e Exclusive
Message ReadRequest(Node R)
Send(Owner, PutRequest);

sharer := R;
State := Excl-To-ReadShared;
exit;

(b)
St at e Excl-To-ReadShared
Message PutResponse(Node R)
SendSharedCopy(sharer);
State := ReadShared;
exit;

Figure 3: The action in box (a) executes the exclusive to
shared transition using synchronous (blocking)
communication, which could deadlock on a real system.
The action in box (b) shows an approach to avoiding
synchronous  communication: it introduces an
intermediate state, which waits for a reply message.




RdShared

Figure 4: State machine (home side) with intermediate
states necessary to avoid synchronous communication.
the seemingly gratuitiouReadRequeshust be retained and
processed after tHeutNoDatamessage. dapot, by defult,
gueues such messages for processing at a later time.

Another important consideration is that a protocol can be
difficult to modify, although this is a desirableawof devel-
oping a custom protocol. Consider adding Gom-
pare&Swapprimitive to the basic protocol. This prinviéi is
a minor \ariation of aWriteRequesthat also recutes the
compare and sap operation at a block’home node once
the block becomesldle. Tracking a pendingCom-
pare&Swapcomplicates nearlyvery transition in a home

tation. The second computation can then resume the cap-
tured computation, often passing alongaue.

Consider the xample from the prgous section.
Figure5 shavs hav to write the protocol transition with
continuations. The &apot Suspend statement in the
ReadRequedtandler is similar to aal | cc. It passes the
current continuationL(, the first agument toSuspend) to
the function that is its second gament. The @&apot
Resume statement is similar to ahr ow, except that it
does not return aalue The Suspend statement captures
its ervironment (the program position, as well as locai-v
ables) at the call point in its firstgament, switches to the
suboutine statespecified by the secondgament, and
passes the continuation. At this point, the handler yields
control (to a dispatch loop), until an action in response to a
message to the subroutine state causes the suspended han-
dler to resume. Subroutine states are parameterized by a
continuation (e.g., th€ont L parameter in Figurgb),
which is part of the efironment of all handlers in the state.

A subroutine state dérs from a normal state in oways:

it is entered synchronously by SQuspend command in
another handleand it can xecute aResunme command to
restore the anronment and transfer control to the program
point captured by the continuation.

Using these mechanisms, a programmer need not split
the code in a handler into atomicallyeeutable fragments
when waiting for a particular message. \Mever, as dis-

node state machine. The state machine-based implementacussed in Sectio®, mary protocol transitions are not sim-

tion needs to test for this condition at 14efiént places.

3 Continuations and Potocols

This section describes our approach to writing handlers.
In general, ay mechanism that permits multiplgezution
contts to coeist can sole the problem of synchronous
communication inside a handler without introducing
explicit intermediate states. Continuations, coroutines, and
thread$ are three such mechanisms.

Using threads, a protocolent handler can be launched
in a nav thread, which yields control at a synchronous com-
munication point. When the subsequent response messag
arrives, the thread is re-scheduled and runs to completion
(or to a later synchronous communication point). Corou-
tines can be used in a similaayv

Continuations can also support synchronous communi-
cation in the follaving way. Recall that a continuation cap-
tures the gecution state of the current computation, and

passes the encapsulated state as an object to another comp

1. In C code, we used a flag in the protocol state associated with a block,
which is basically a doubling ofxisting states. Maintaining flags, \ue
ever, is more tractable from a programnsapoint of viev.

2. These are light-weight, self-scheduling threads that yield control to each

ply a matter of waiting a particular message—upected
messages may also &giduring the transition and need
action. These messages require aplieit intermediate
state in which the programmer handles all messages that
may arrve while waiting for a particularent.

An attractve benefit of continuations is that yhallow
reuse of such intermediate states betwedierdift transi-
tions by preiding the notion of calls between states. A sub-

St at e Exclusive
Message ReadRequest (Node R)
Send(Owner,PutRequest);
Suspend(L,AwaitPutResponse{L});

(@) SendSharedCopy(R);
State := ReadShared,;
e exit;

St at e AwaitPutResponse(Cont L)
Message PutResponse
Resune(L);
exit;

(b)

u-

Figure 5: Using continuations to avoid introducing new
states. State AwaitPut Response is used as a
subroutine state.

other (through a scheduler), rather than true concurrent threads that carB. This is in keeping with the imperate nature of @apot. Each block has

potentially ekecute on multiple CPUs.

a global “info” area ailable, which can be used to communicatkies.



routine state (such asnai t Put Response) is oblivious tains code that handles a message to a home node for a
to the state from which it&s irvoked and the state to which  block in ReadSha¥d state. The handler firstvialidates out-

it goes ngt, since the continuation contains this informa- standing copies and thervokes the transitioReadShazd-

tion. Thus, the state can be a subroutine for all transitionsTo-ldle. Then, it performs the actu@bmpae&Swapopera-

that avait and anticipate the same message(s) and perforntion. Similar changes (hot sla) are necessary in states
the same actions in response to those messages. By contrastile andExclusive If the Compae&Swapmessage anes

a state machine requires each handler tee ke distinct in ary other state, @apot automatically queues it until the
intermediate state to encode subsequent transitions. Subrouslock enters a state that can process the messageedhe T
tine calls permit significant code reuse in real protocols, aspot code, unlik a state machine, forces the transition to the
the action codes fefcting transitions between states are fre- Idle state by a subroutine-Bk mechanism, rather than
qguently identical. Br example, in the Stache protocol, the encoding the pendinQompae&Swapoperation in the state
four different handlers thatait for aPutResponsmessage until it can be gecuted in a transition into thdle state.

share a single subroutine state. More compleotocols A state, subroutine or normalaits for and processes a
(LCM in Section6) presentedven more code reuse oppor- |imited collection of messages. All other messages can be
tunities. In eflect, continuations turn a finite-state automa- queued for deliery after a transition out of the state—or

ton into a push-den automaton. discarded or nack'ed, as a programmer chooseapok
Continuations can nest: a subroutine called fraBus- does not impose a general solution to the problem of unin-
pend can itself invoke anotheBuspend. A stack of con- ~ tended messages, becauséedht protocols hee different

tinuations ofers a cowenient mechanism to record N€eds. Hwever, Teapot preides general mechanisms that
incomplete tasks. In a state machinejting for a succes-  Permit a programmer to specify: which messages should be
sion of messages requiressnimtermediate states. By con- Processed in a state, wcto handle other messages that
trast, a function called frorBuspend can itself suspend arrive, a_nd what to do with these_unlntended messages. Ina
for another message. This pites a useful abstraction for ~Subroutine  state  (such aswai t Put Response in
processing a series of messages M1 and M2 since the codE'9ures) that vaits for a reply message to complete a tran-
in Awai t ML can eecute aSuspend(Awai t M2) . For sition, a programmer typically specifies a limited set of
example, in the Stanford ABH coherence protocol [19], a M€SSages that should be processed immediately and defers
home node returns\WriteResponsthat requires the writer ~ the others (by enqueuing them) until the transition com-
to wait for Invalidation-Ads from the current readers.itW pletes. . .

this mechanism, the handler processing the response can In order to cowert a handler containing blocking calls
directly Suspend to wait for the n&t acknavledgment.  into non-blocking code, theeapot compiler captures a han-

This feature \as used seral times in the LCM protocol. dler's ewironment immediately before &aSuspend
(Sectionb). Teapot continuations are not fully general: calls

Figure6 shavs .h(.y\.’ continuations simplity adding a to Suspend can appear only in a handeody and not in
Compae&Swap primitive to the Stache protocol. It con- 5 gterng| procedure called from a handi€his reduces
St at e ReadShared the state that must be captured to only the logahbles of

Message Compare-N-Swap (Node n, the calling routine, and thuadilitates optimizations.

Address a, L .
Value old_val, In principle, we could hae achiged the same fct by

Value new_val) providing a light-weight threads package to the program-
mer. However, continuations are a highkwvel language
Suspend(L, ReadShared-To-Idle{L}); feature and lend themselr more readily to compiler opti-

I f (*a==old_val) Then mizations.

*a := new_val;
Send(n, Compare-N-Swap-Success);

El se
Send(n, Compare-N-Swap-Failure); 4 TeapOt Language
E)r:,dltf Teapot is best introduced by a code fragment from the
Stache protocol (Figuré and Figure). Note that this is the
Figure 6: Adding Compare&Swap to Stache protocol. The complete executablecode for those states: no details are
code in this figure shows the code for the ReadShared elided. This code implements the protocol messages go
state. Similar changes are required to Idle and Exclusive erning a block irReadOnlystate on a non-home processor

states. If the processor attempts to write to the blockipest

sends a protocoventW\R_RO_FAULT. The action for this

1. This is not to imply thaResunes should dynamically match the corre- .
sponding Suspends; however, all Suspends must eentually be event first sends abPGRADE_REQto the home node and

Resured (or otherwise deallocated) to pemt memory leaks, as there is  then  Suspends, calling the subroutine state
no huilt-in garbage collection. Cache_RO To_RW Later the code for




St at e Stache.Cache_ReadOnly{}
Begi n
Message WR_RO_FAULT (id: ID;
Var info: INFO;
home: NODE)
Begi n
Send(home, UPGRADE_REQ, id);
Suspend(L, Cache_RO_To_RW/{L});
WakeUp(id);
End;

Message PUT_NO_DATA_REQ (id:ID;
Var info:INFO;
home: NODE)
Begi n
Send(home, PUT_NO_DATA_RESP, id);
SetState(info, Cache_Inv{});
AccessChange(id, Blk_Invalidate);
End;

Message DEFAULT(id: ID;
Var info: INFO;
home: NODE)
Begi n
Error(“Invalid msg %s to Cache_RO”,
Msg_To_Str(MessageTag));
End;
End;
Figure 7: Teapot example from the Stache protocol.
Continued in Figure 8.

St at e Stache.Cache_RO_To_RW{C:CONT}

Begi n
Message UPGRADE_ACK (id: ID;
Var info: INFO;
home: NODE)
Begi n

SetState(info, Cache_RW({});
AccessChange(id, Blk_Upgrade_RW);
Resune(C);

End;

Message GET_RW_RESP (id: ID;
Var info: INFO;
home: NODE)
Begi n
RecvData(id, Blk_Upgrade_RW);
SetState(info, Cache_RW{});
Resumne(C);
End;

Message DEFAULT(id: ID;

Var info: INFO;
home: NODE)
Begi n
Enqueue(MessageTag, id, info, home);
End;
End;

Figure 8: Teapot example continued from Figure 7.

Cache_ RO To_ RWexecutes dResune statement, which
restarts the suspended handgnich in turn restarts (akes
up) the original computation thread thatited.

StateCache_ReadOnl y (Figure7) explicitly handles
only theWR RO FAULT and PUT_NO DATA REQ mes-
sages. All other messages pass to EEE-AULT code,

Teapot supports basic iger and boolean types and
includes adcility for declaring compound types and proto-
types of functions that manipulatalues of those types.
Datatypes must be abstract because thapdt system
derives C code and Mdr code from the same protocol
specification. MuP’s types aredr more limited than G’

which raises an error since other messages are erroneous |[g] Consider maintaining a list of processors in a data struc-

this state. Figur8 shavs the subroutine state
Cache_RO To_RW The home node responds to an
UPGRADE_REQwith one of tvo messages, hence the state
must be prepared to handle both. In this stateDEMAULT
case enqueues all other message for later processing.

The operationResune(C) takes a continuation and
restarts the suspended handler (after restoring visoen
ment). Notice the continuation paramet€éy in this states
definition. This agument is bound to the continuation
passed at th&uspend in the preious handler (State
Cache_ReadOnly, MessageWR RO FAULT, in our
case). If a message handler in this state contairfcsa
pend operation, the ariable C would also be seed and
restored. In this ay, Suspends nest dynamicallylike
cal | cc in ML or Scheme.

In addition to continuation statementsapot handler
bodies can contain ceentional imperatie constructs:
assignments, procedure calls, conditionals and while loops.
Handler bodies are typically short.

ture that supports operations such as include-shietate-
shareretc. A C implementation coulcekp a bit ector in a
word and implement operations witHielent logical opera-
tions. Mud, on the other hand, represents the same infor-
mation as an array of Bipe, where Bitype is a
enumerated type of twvalues. © support both tgets, a
Teapot program does not specify the implementation of a
data structure. Instead, these programs declare abstract
types, e.g., SharerList. As a result,eapot specification is
neither a complete C program, nor a Muprogram. The
programmer must instantiate abstract data types by defining
concrete representations and functions. In addition, some
system-lgel issues, such as obtaining a proper dispatch
function for both the C and the Mbrcode, are omitted
from this paper since tiieare routine and reusable for dif-
ferent protocols.

Appendix A presents thee@pot grammar



5 Compilation Message HANDLER1(argl: T1; arg2: T2)

Teapot code could be compiled to use light-weight var 11,12: T3:
threads in whichSuspends andResunes would cause Begi n
saves and restores of thread cotse Since we restricted stnt1
our input language, the generality of threads is unnecessary stnt2
First, Suspends occur only at statementvid (by contrast @) L:= AllocContinuation();
call/cc can occur amvhere in an xpression). Second, a L.funcPtr := HANDLER1_after_L;
Suspend cannot appear in a function called from the main Save argl, arg2, |1, 12in L;

Put L in environment;

handler Given these restrictions, a handler written with
State := NewState;

Suspends andResunes can be directly compiled into

non-blocking gent handlers, without multiple stacks. End;em b
To illustrate the process, we will apply sourceele
transformation to the handler in Figu@@eThe compiler first Message HANDLERZ1_after_L(L: CONT)
transforms the handler into daroutines (Figurd0), the Var
first of which includes code up to tf&ispend and the argl: T1;
second that includes the remaining codeRes une state- arg2: T2;
ment simply &tracts the function pointer from the continua- Begillnllzz T3

tion record and calls the second function. This (b)
transformation wrks e/en if Suspend statements occur
within control structures (nested loops and conditionals).

Restore argl,arg2,I1,12 from L;
FreeConti nuati on(L);

stnt3
The first fragment runs through tBaspend then «its the stnt 4
handler routine. The code for the second part starts after the exit:
Suspend. Well-structured programs—all eapot pro- End:

grams—can abays be split this ay.

An optimization is to sz and restore in the continuation | Figure 10:Code generated for the handler in Figure 9.
only values that are referenced after 8uspend. Often in
a handlerno alues are sed and restored, so that a contin-
uation can be statically allocated and used by all handler
invocations. Furthermore, the compiler detects if a constant
continuation reaches a particulBesune site. If so, the
code from the handler can be in-lined at Ressune site.
This optimization is similar t@-contraction, as discussed
by Appel [2], and has pved efective in our &periments .

lines of C). Bblel contains performanceauation of four
benchmarks running under the Stache protocol (on a 32 pro-
cessor CM-5 running Blizzard-E [24]). The second column
reports the application running time (millions gttes) for
the hand-written C protocol. The xtegwo columns report
times for unoptimized and optimizeaddpot protocols. In
the unoptimized results, the compiler performie kariable
analysis It not the constant continuation optimization. The
optimized numbers skhothe times when the compiler per-
. forms both e variable analysis and the constant continua-
6 Case Studies tion optimization. The ne column reports the number of
continuation and queue records allocated and freed on all
Previous sections presentedveeal exkamples from the nodes. The last column reports theerage time across
Stache protocol. ¥/ wrote the Stache protocol iredpot  podes spent aiting for faults and message handlers in the C
(600 lines, which compiles to 1000 lines of C code) and siate machine. This number is a measure of the communica-
compared its performance agst the original, hand-writ-  {jon overhead of a program. It, Wwever, is not a true mea-
ten, state machine implementation (approximately 1000 gyre of the time spent in protocol processing, because

Message HANDLER1(argl: T1; arg2: T2) running a handler while aiting for an earlierdult adds no

Var overhead. This number puts the performancerteead of
11,12: T3; Teapot in proper perspeadi

Begi n
stmt1 The optimized Stache protocol ran 5-10%wao than
stnt2 the C \ersion. The constant continuation optimizationyho
Suspend(L, NewState{L}); ever, effectively reduced the number of continuations and
stmt3 improved eecution time of programs that allocate a dispro-
stnt 4 portionate number of continuations on avf@rocessors

End; (because of memory reference patternsg Wil shortly

Figure 9: A sample handler, with a Suspend point. The return to the issue of performancefeliénce between the

compiled code is in Figure 10. Teapot and state machinersions.



Because of &apot, we were able to implement easily
three \ariants of LCM: one that eagerly sends updates to
consumers at the end of an LCM phase (LCM-Update),
another that manages multiple, disitdd copies of some

We believe that most ne protocols will be ariants of
existing ones. Br example, we implemented awant of the
Stache protocol that attempts teedap the latenc of
acquiring a writable cgpof a cache block with future com-
putation by biffering writes until a synchronization point. data as a performance optimization (LCM-Mcc), an@ia v
The modifiation to Stache codevaived adding 4 ne sion of LCM that incorporates both (LCM-Both) of these
states, 4 ne message types, and some support routineschanges. Agin, equvalent state machineexsions of these

This protocol requires an application toseahe synchroni-  protocols were notvailable for a performance comparison.
zation needed by the weakly consistent memory model [1].

Since we did not hee a state machine-based implementa-
tion, we are unable to present compaeafierformance data
for this protocol.

We found it ery difficult to isolate thedctors that wuld
account for the performance féifence between the=@pot
and state machine protocols. In particu@-5 processors
have small (64Kb), unified, direct-mapped caches, which

LCM is a far more compbe protocol [18]. It eploits ¢4y xaggerate the fefct of small increases in code and
controlled inconsisterycin phases of parallel programs and |qca1 data. In addition, the BRC register windovs can

has been used as run-time support for languages that req“”ﬁenalize ®apot handlers since thadd a lgel of indirect
copy-in-copy-out semantics for parallel loops. When a pro- ¢,1tion call at all handlets

gram enters an LCM phase, each processor can obtain a
copy of a location that is notept consistent. A node can
access its cgpwithout afecting another processokt the used a detailed architectural simulator of a multiprocessor
end of the LCM phase, each node with aycmzonciles its ~ that implements the efmpest intedce. The simulated
modifications with other nodes, so that the system returns tanachine difers from the CM-5: it has Iger (256Kb) data

a consistent state. Figuté shavs hav Teapot &cilitates  caches and unlimited gister windevs. Experiments with
handling a comple network reodering problem that arises the Stache protocol sived that Bapot ersions were con-

in the LCM protocol. sistently within 5% of the »@cution times of the state
machine ersions. Simulator statistics also shthat eent
counts and the times spent in th@tversions are compara-
ble. Teapot e@erheads in message handleroications
account for the remaining f&frence.

To understand better the performancdedénces, we

The LCM protocol in €apot (1500 lines) compiled to
approximately 2300 lines of C code. The state machine
implementation of LCM protocol required approximately
2500 lines of C. able2 contains performance numbers for
three benchmarks running under the LCM protocothW 1. in the LCM benchmark that performednst, the performance @-
optimizations, the LCM protocol performed comparably ence vas reduced to within 6% byaiding (via hand-coding) the use of
with the state machinesvsion in most cases tested. register windevs at one call site.

Table 1: Performance oE&@pot system with Stache protocol.

Execution Time in cycles (% increase ger C code)
Teapot Teapot Allocs in Opt/

Benchmark | C State Machine Unoptimized Optimized Allocs in UnOpt Fault time
gauss 1930 M 2150 M (11.4%) 2050 M (6.2%) 65.7K / 551K 40%
appbt 1860 M 2100 M (13%) 1990 M (7%) 19.9K/ 1197K 36%

shallov 1160 M 1310 M (13%) 1280 M (10%) 0.3K /1001 K 44%
mp3d 2210 M 2340 M (5.9%) 2320 M (5%) 443 K /3249 K 72%
Table 2: Performance ok&pot system with LCM protocol.
Execution Time in cycles (% increase ger C code)
Teapot Teapot Allocs in Opt/
Benchmark | C State Machine Unoptimized Optimized Allocs in UnOpt Fault time
adaptve 3301 M 3440 M (4.2%) 3376 M (2.3%) 124 K/ 4410 K 28%
stencil 3717 M 4120 M (10.8%) | 3859 M (3.8%) | 3347 K/ 7452 K 63%
unstruct 1431 M 1710 M (19.4%) | 1666 M (16.4%) 62 K/2572 K 38%




Cache (non-home) Side Home Side
[CacheWritable] [HomeExclusive]
Enter LCM:
Flush Copy:

PUT_ACCUM

Read Fault; [HomeAwaitBeginLCM]

[CachelnvalidToRQ] GET_RO_REQ
Enqueue the message

BEGIN_LCM

[HomeLCM]
Process the queue

GET_RO_RESP
[CacheReadOnly]

the queuing of GET_RO_REQ.

St at e LCM.Home_Excl{}

St at e LCM.Home_Await_ BEGIN_LCM{C:CONT}

Figure 11:This figure shows a network reordering problem occuring at several places in LCM. The cache (non-home)
side sends the home a BEGIN_LCM message indicating that it is entering LCM phase. The message reaches the home
after two other messages. The Teapot code on the right handles this scenario by going to an AwaitBeginLCM state. Note

Message PUT_ACCUM(...)
Begi n

Send(src, PUT_ACCUM_ACK);
Suspend(L,Home_Await BEGIN_LCM{L});
State := Home_LCM;

End;

Message BEGIN_LCM(...)
Begi n

Resune(C);
End;

Message DEFAULT(...)
Begi n

Enqueue(...)
End;

7 \erification

Several techniques carerify the correctness of a proto-
col by ensuring that it does not violate a set whiiants.
Model checking by xhaustve state-spacexploration is a
popular technique in hardwe cache-coherence community
The Murd system, hilt by Dill et al. at Stanford Urersity,
uses this technique. A M@r program specifies an initial
state, a set of rules, and a set ofimants. Rules fire only if

executable code. In additionedpot sees the dbrt of writ-

ing a separate specification. Waver, a protocol writer
must supply support routines that define data structures in
Murd’s input language and awemt generation loop that
generates a random sequencevehis for which the proto-

col must vork corectly For ekample, in the Stache protocol,
each node should procesy atream of loads and stores to
ary shared addressesorRRhe Bufered-write protocol, each
node must handle synchronization operations randomly

their preconditions are satisfied. When a rule fires, an actioninterleaved with the loads and stores Turther check the

code gecutes and the systesrstate changes. Marruses a
Pascal-lile input language to xpress conditions and
actions. It selects the firing rule non-deterministically from
the enabled rules, which permits simulation of asynchro-
nous &ents. Muf explores all possible interlgangs of
events in a breadth-firsaghion (although it has options for
different search strajees) and checks that thevariants
hold in every state. Should an assertiail,fMurd® produces

a trace of eents leading to the erroneous state.

In general, Mu® requires a programmer to write a pro-
tocol twice, once in arnxecutable form and once in Mbis
specification language. Writing a Mbr specification
requires significant &rt. Our hand-coded specification of
the Stache protocol ag approximately 800 lines of Mar
code. In addition, erifying a specification—rather than an
executable protocol—can hide errors arising from the dif-
ferences between thedw

To sole this problem, &apot automatically generates a
Mur® specification from a &apot protocol. Since a single
source produces bottenification and eecutable code, the
Mur® specification accurately captures the lvaraof the

correctness ofalues in the shared mempeymore stylized
event generation loop is necessay the alues will be con-
sistent only if loads and stores gba discipline [1] with
respect to synchronization operationsefivgeneration for
Stache and Bitdred-write protocols required about 50 and
100 lines respeately of Murd code. LCM protocol eent
generation is quite complicated—it took about 400 lines of
Mur® code.

One problem with model checking is limiting the size of
the state space that must b@lered. In general, we simu-
lated a minimal machine with 2 processor nodes and 2
shared memory addresses. Also, oerifications did not
test actual dataalues. V& currently erify that a protocol
does not deadlock and that it does not kec@i message
that is not anticipated in avgin state. Additional assertions
can be erified as neededubhave not preen necessary

Our &perience with Mu® has beenery good. It found
errors in a reasonable amount of CPU time (typically within
an hour on a 66 Mhz SparcStation with 150M memory). It
even unceered an unsuspected protocolghin a hewily-
used implementation of the Stache protocol, which could



occur under a particular interléag of messages in the net-
work. Table3 lists the werification times on a 66 MHz Sparc
with 150M of memory for each of the protocols we wrote.

Table 3: Protocol erification times

Protocol Configuration Time Taken

Stache 2 nodes, 2 addresses| 4900 seconds
1 reordering mak

Buffered- 2 nodes, 1 address 302 seconds

Write 1 reordering max

LCM Simple | 2 nodes, 1 address 11515 seconds
1 reordering max

LCM Mcc 2 nodes, 1 address 5804 seconds
1 reodering max

LCM Update | 2 nodes, 1 address 8745 seconds
1 reordering max

LCM Both 2 nodes, 1 address 1104 seconds
1 reodering max

a. Out-of-order messages increase the number of states that
Mur® has to gplore. W& limited the amount of reodering in
the simulated netark, because unrestricted reordering (i.e.,
arny number of later messages along a channel can cross an
earlier message) led to impractical simulation sizes.

Mur® proved een more aluable for compbe proto-
cols!, such as LCM. The original, hand-written LCM proto-
col contained numerousups that consumed months of
effort to fix, and that continually re-eng&d as the protocol
evolved. Mur® uncovered approximately 25 errors in the
Teapot LCM specificatioﬁAfter verifying the Bapot code
for LCM, we ran the automatically generated C code on
several applications with little &brt. The remaining prob-
lem was an error in a support function thatsanot erified.

Model checking technology will doubtlessly impeo
and allav larger protocols and systems to be clesbk
Researchers argoring techniques thakploit symmetry
or domain-specific kneledge [22] to mak systems less
dependent on a brute-forcepdoration of a state space=d-
pot is poised to benefit from the progress in this area.

8 Related Work

Distributed shared memory (DSM) systems are awvecti

area of research since Li's first system [20]. Most systems

is eficient for a wide range of programs. Munin [5aswthe
first DSM system to support a limited collection of proto-
cols intended for diérent sharing patterns. Recent systems
[17, 23] talke a diferent approach andpgose the primities
necessary to implement a coherence protocol. Digéib
object systems [3, 6, 16] also pide primitives to support
different object coherence protocolgapot is not tied to a
particular system and could be used with ahthem.

Our work most closely resembles the PCS system by
Uehara et al. at the Umrsity of Tokyo [25]. The
described a framreork for writing coherence protocols for
distributed file system caches. Urdikleapot, thg use an
interpreted language (implemented on Tcl!). d.ikeapot,
they write protocol handlers with blocking primiés and
transform the program into a message-passing style. Our
work differs in seeral aspects. éapot's continuation
semantic model is more general than PCS's, which is a mes-
sage-dnren interpretation of a protocol specification. PCS's
application domain is less seng#tito protocol code &f
cieng/, so thg do not &plore optimizations. Finallywe
exploit verification technology by automatically generating
an input specification for the M@rverification system.

Wallach et al. propose Optimistic Aoti Messages [26]
that permit the use of blocking prinviéis inside handlers.
They detect at runtime whether a handleroives a block-
ing primitive; and if so, the launch a separate thread in
which to rerun the handler

Synchronous programming languages, such
ESTEREL [4], are useful for describing resetisystems
and real-time applicationse@pot resembles ESTEREL in
that it provides a specification of the control part of the pro-
tocol, leaing data manipulation to separately written (often
in C) support routines. L&k ESTEREL, €apot supports
verification and can be translated keeutable code.eapot
differs from ESTEREL in that its emphasis is on simplify-
ing the task of programming complicated finite-state
machines.

Continuations canxpress coroutines [13] and parallel-
ism [12, 27]. Hwvever, few domain-specific languages
exploit continuations, perhaps because of concerns about
their implementation comptéy and cost. €apot demon-
strates that a restricted form of this feature can be imple-
mented easily andfafiently, without losing its benefits.

Draves et al. [10] used continuations to implement thread
management and communication in an operating system.
They found maw benefits, including reducing the number
of kernel stacks from one per thread to one per progessor
and unifying implementations of \dirse control transfer

as

focus on a single general-purpose protocol that, hopefully operations, such ageeption handling, preempé schedul-

1. Mur® simulating LCM had hundreds of times as snapnfigurations
as when simulating Stache.

2. With the limited memory\ailable, we could only erify LCM with 2
processor nodes, 1 address, and maximumanktxeordering of one. &f-
ification of either 2 addresses or more rawvreordering did not com-
plete, although Mup did not report ne errors for as long as it ran.

10

ing, and uselevel page &aults.

The netvarking community has deloped a number of
approaches toalidating protocols. Besides temporal logic,
they also use model-checking techniques based on state-
space eploration [15, 21]. © the best of our kwdedge,



most of their programming models are based on state
machines and do not use continuations.

Wing et al. [28] present an eloquent case for using model
checking technology with complesoftware systems, such [g]
as a distribted file system coherence protocol® &0 use
model checking technologyut our primary focus is on a
language for writing coherence protocols, and onviaeyi
executable code as well as therification system input
from a single source. Thewrite the input to the model

19

checler separately from their code, which introduces the (10]
possibility of errors.

. 11
9 Conclusion ()
Marny programming language features arevedeped and
explored in general-purpose programming languages and*?
rarely find their vay into domain-specific languages. This
paper proides a counteexample by shaing hav ideas 113

such as continuations canvildack into a special-purpose
language that supports the process of writing aridying
memory-system coherence protocols. These protocols areh‘l]
important to the programming languages community
because thefacilitate parallel programming and pide an
efficient basis for implementing languages and compiler
run-time systemsFor more information about éBpot,
please visit the URL http://wwws.wisc.edu/~wwt/teapot.  [16]

[15]
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Appendix A: Teapot grammar

program:
modules potocol states
modules:
[ module]*
module:
nmodul e id begi n mod-declsend ;
mod-decls:
[ mod-dec]+
mod-decl:
type id ;
sub-decl
const id :

sub-decl:
function id ( sub-agsy: )
procedure id ( sub-agsy ) ;
protocol:
protocol id begin prot-declgy end ;
prot-decls:
[ prot-decl]+
prot-decl:
var id : id ;
const id :=id ;
state id ( state-agsgyp ) transient gy ;
nmessage id ;
states:
[ state]+
state:
state id. id ( state-ags,y; ) begi n msgsend

id ;

id ;

state-ags:
state-ag [ ;
state-ag:
vars :
msgs:
[ msg]+
msg:

state-ag ]+

id

Jeannett®l. Wing and Mandana Vaziri-Farahani. Model Check-
ing Software Systems: A Case StudyProceedings ACM SIG-
SOFT Symposium On The Foundations Of Software Engineering
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message id ( sub-ags,, ) blok-declgy begin
stmts end ;
sub-ags:
sub-ag[ ; sub-ag]+
sub-ag:
var vars : id
vars : id
blok-decls:
var [ var-decl]+
var-decl:
vars : id ;
vars:
id[,
stmts:
€

stmt ;

id T*

stmts

stmt:
if ( expr) then stmtsel se stmtsendi f
if ( expr) then stmtsendif
while ( expr ) do stmtsend
id ( exprs)
id : = expr
suspend ( id ,
resume ( id)
return expr

stmt )

return
print ( exprs)
exprs:

€

expr[ ; expr]*
expr:

expr sym-id app-epr

app-epr
app-epr:

id ( exprs)

id { exprs}

atomic-epr
atomic-pr:

id

const

( expr)



