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Abstract. Unlike compilergeneated mesgge-passing writer to a reader processor may require four or more mes-
code the coheegnce mdtanisms in shad-memory systems sages (see Figufg [10]. A recent study bydFrie et al. [32]
work equally well for egular and irrgular programs. In shaved that memory systenverhead could account for
many pograms, howeer, compile-time information about more than 30% of thexecution time of a suite of compiler

data accesses would permit data to l@msfered moe efi- parallelized programs. The underlying problem is that con-
ciently—if the underlying shad-memory system fefed ventional multiprocessors priole only a single, figd
suitable primitives. This paper demoragés that cooper coherence protocol to communicat@lues among proces-
tion between a compiler and a memory cehee potocol sors. Unfortunatelyno protocol performs well in all cir-
can impove the performance of HigreFormance Brtran cumstances. In these systems, safew cannot \&id
(HPF) programs running on a fine-gin distributed shaed coherence verheadper se although may lateny reducing

memory system up to a factor of 2, whééaining the ver-  and tolerating techniques Ve been proposed [11,22].
satility and portability of shaad memoryAs a consequence  Moreover, on cost-dective systems that implement shared
shaed memong performance becomes competitive with memory on a cluster ofaevkstations [1,31], higher commu-
messge passing foregular applications, while not &fct- nication latencies makcoherencewerhead een more tax-
ing (or in some casesyen impoving) its lage advantge ing.

for irregular codes. This paper describes the design of our

implementation andeports &perimental esults. Shared-memory systems areginming to proide alterna-

tive ways to speed data transfers, which range from ne
memory operations to the option of bypassing the coherence
] protocol. All-hardvare systems puide simpler operations,
1 Introduction but a multiprocessor can pride memory system opera-
tions—such as poststore [29], co-opemtprefetch [14],
Parallel programs running on shared-memory multiproces- self-invalidate [14], or store-and-foawd [18]—that a pro-
sors often spend considerable timaitung for the underly-  grammer or compiler can use to impegerformance. Sys-
ing memory system. Thisverhead is particularly acute for tems that implement coherence in safte—such as
programs with dilse sharing or poor locality of reference. Typhoon [26], Flash [19], Shasta [30], and most page-based
Another well-knavn source of werhead is the fed cache-  systems [1,3]—can go further andfesf message-passing-
coherence protocols used in shared-memory multiprocesdike communication primiies or customizable protocols.
sors. ler example, transferring a single piece of data from a Even some commercial shared-memory multiprocessors,
This work is supported in part by Wright Laboratoryiénics Directorate, Air &rce such as SING [21]’ offer some support for data transfer
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cies or endorsements, eithepeessed or implied, of the Wright Laboratoryidnics focuses on HPF programs running on a flne-graln distrib-
Directorate or the U.S. Gernment. uted shared memory (DSM), though the approach is more
generally applicable. In particulane shav how static pro-
gram analyses pvously developed to compile for mes-
sage-passing systems [28,33] can also identify opportunities
for efficient value transfer in shared-memory systems. Our
HPF compiler uses these analyses to identify cache blocks
for which eficient communication is both beneficial and
safe. It then inserts run-time calls thafplkcitly manage
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communication for these blocks. In the parts of program inirregular HPF applications. Ongelar programs, most opti-
which the necessary preconditions for data accesses cannahized eecution times are competié with pghpfs defult
be found at compile-time, our system altothe dedult pro- message-passing performance. Mwegounlike pghpf we
tocol to manage communication. Akcontrikution of this also achieed good performance on the gtdar programs
work is the deelopment of a contract between the compiler in our application suite.

and coherence protocol, so yhean co-operate to reduce L .
data-transfer costs for data structures and program phas lthough remote memory references in B lizzard running on
where static analysis permits. Our techniques are appropri—t e cluster of wrkstaﬂp ns are costly in absolute terms
ate for fine-grain shared-memory systems, ag bypass (~100us), thy do not difer from modern hardare shar_ed
the degult coherence mechanisms on small amounts of "€MOTY Systems nearly as much when measured in instruc-

data. Rge-based systems require a seohw diferent tion_s. Iimeg(;ng paralle:]_systelr(nz gener?II); p'm:ﬁ Iir:ﬁ'
approach, though the compiler analysis is similar grain shared memaryr IS viork demonstrates that these
systems should also ptide coherence protocol bypasses

The approach that we astate, shared memory with coher- that a compiler canxgloit to improve the performance of
ence optimizations, tdrs the important benefit of greatly shared-memory applications.

expanding the domain of HPF programs that can be written
and compiled ééctively. This pansion is made possible
by combining the dtiengy of message passing with the
flexibility of shared memoryln our system, the compiler
communicates cache blocks througipleit message pass-
ing, which bypasses shared-memory communciatier-o
heads. This results in nearessage-passing performance
for regular programs.

The paper is ganized as follws. Sectior? discusses
related vork. SectiorB provides background materials on
coherence protocols and discusses the opportunities for
coherence optimizations in fine-grain disttésd shared
memory Sectior4 describes our compilation model and the
interface to the coherence protocol. SecBopresents our
experimental setup. Sectidhpresents detailedkperimen-

tal evaluation of our technique.
Although compilergenerated message passingrks well

for regular programs, it fails for programs containing

irregular references. Ingular references inside a parallel
loop? force a compiler to either generate scalar messageg Related Work

inside the loop, or pay forxganeous communication— .
potentially broadcasting the entire data set. Both theseOur techniques closely resemble those used bgrkadas

. . et al. [9] to optimize coherenceverhead on a page-based
options lead to poor performance [28,7]. In special cases, ébSM [53]/stemp Both compilersxgloit well-kno?vng tech-
compiler can use thénspectorexecutor technique [17], :

which ultimately implements a shared memorywief Elq;Jee;uf;LStigﬁ:rr;i;;?&iz fnﬁm:;i:ﬁzsfizzgziper
selected arrays [23]. But, a systemypted shared-memory tigted trangfers Heever, Dwarkada£ techni l?es are tar-
layer frees a compiler from the straitjatlof precise static ' ' q

: L o geted at page-based DSMs (such asadMarks[1]). In
analysis and permits iigelar programs to run fediently. TreadMarks, detecting and preparing for writes (twinning)

To demonstrate our approach, we modified a commercialare expensve operations. Not surprisinglthe most profit-
HPF compiler—the Portland Growppghpf—to generate  able optimization is to pvent write-aults from occurring.
simple shared memory code [4] and to perform the commu-Dwarkadas found that seneeitiated transfers yield minor
nication analysis necessary to insert run-time calls to ourbenefits. By contrast, in fine-grain shared memory systems,
extended coherence protocol. Oumgetlris the Blizzard sys-  such as ours, the cost ofiging write-avnership is &r

tem [15], which implements distuited shared memory at lower, so we optimize for the delays in true sharing.

the granularity of cache blocks (e.g. 32-128 bytes) and
enables application code to pide its avh coherence pro-
tocol. We performed ourxperiments on a Blizzard system
running on an 16-node cluster of SparcStation?dkata-
tions connected by a high speed ratw(Myricom Myri-
net). Our results shwothat optimizations reduced theevall
execution times by up to 45% on a suite of ular and

Furthermore, Dwarkadas compiler analysis requires and
uses only localized access information between program
barriers. This choice is appropriate to compile a phase of an
explicitly parallel program. Haever, since we focus on
compilerparallelized programs, further optimizations are
possible. In compileparallelized programs, avk distriku-
- _ . _ tion is determined at compile-time and typically falbothe
1. Programs in which all array subscripts arfinaffunctions of sur-  qywnercomputes rule [28] (although our scheme can handle
rounding loop indices and precise communication analysis is pos- . L . . .
sible. Complicated control-flo inside loops can sometimes other computation distriiions as well). This compile-time
obstruct analysis on seeminglytear references. analysis enables us to track theweiment of cache blocks
2. Aloop that has no loop-carried dependence and hence all its iter- ACI0SS parallel loops, and aﬂs us to consider for optimi-
ations could run in parallel. This could either be inferred by the zation only the blocks containing array elements that are
compiler or a programmer could declare a loop to be parallel by jnyolved in produceconsumer relationships. ithout such
using an NDEPENDENT directive. . . .
global information, the compiler has to apply coherence
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Figure 1. (a) Defwult coherence scheme. Notice the number of messages required to transfer one block. The mess:
are as follavs: 1. read-request 2. put-data-request 3. put-data-response 4. read-response 5. write-reqlidatiénin

7. acknavledgment, and 8. write-grant. (b) Direct update message to the.idati=the reduction in the messages. A
final step is required to ensure coherence.

optimizations taall blocks accessed in a parallel loopywHo  compiler techniques for this problem [8,6]. Wwiver, these

ever, in Dwarkadass work, the runtime systemekps track  schemes are intrinsically consative and must wark for all

of modified pages andvaids the cost of alidating such data accesses—rather than the selected ones on which we
pages. Second, wexmoit the aailability of fine-grain focus—so thyg often sufer from excessve invalidations and
access permissions to reduce the cost of coherence-manipue-fetches. In our system, a dealt protocol automatically
lating calls to a protocol (Secti@h3). Although these calls fetches the latestalue at a read: we only seek to mdhkis

may not incur a laye overhead on a page-based system, transfer more étient.

fine-grain systems ka mary more transfer units (cache . .
g y Y ( Larus et al. [20] used compiteontrolled incoherence to

blocks). . . o
efficiently implement a data-parallel language. Their fine-
Keleher and Tseng [16] reduce miss time on their page-grain, cog-on-write protocol for specially maekl blocks
based DSM by flushing modified pages to prospectad-  reduce the high cging overhead necessitated by conserv
ers, as opposed to\iag readers fetch them on a reference tive static analysis. By contrast, we use comitettrolled

(e.g., poststore). Tlealso use compiler analysis to find a incoherence to makstatically identifiable communication
set of pages that are communicated in a stable patternmore eficient.

although the actual detection of producers and consumers is
left to a run-time system (thieobsere that this could be
done by a compiler). In contrast with Brkadass and our H ;
work, their approach does not relax the syssecoherence 3 Coherence Overhead & Optlmlzatlon
to permit a compiler to control all accesses to shared dataA
When applicable, we use precise compiler analysis to iden
tity the blocks that need to be send from a writer to reader
and then bypass coherence protocol when possible.

typical coherence protocol supportsotfunctions. First,

it satisfies a load operation by shipping the currahtesof
Sthe requested location to thaufting node, in a manner
transparent to the program. Second, it maintains cuyrr@ic
Another proposed group of machingequire software values by either walidating, or updating»asting cached
involvement to maintain coherence [24]. Scfter cache  copies when ne values are written. Details, such aswvho
coherence raises @dult problems in identifying »actly soon a reader canxgect to see a mdy written value, \ary
how long to leep a alue in the programmable cache and according to the consistgnmodel underlying the protocol.
when to fetch a e value. Seeral researchers Y& studied An important limitation of coherence protocols is that



respond to memory references, without globalWidedge of those that straddle dimensionsrFexample,a(513,1) and

a prograns memory accesses. a(1,2) could reside in the same block for a 513x513 almay

this case, it is notafays possible to dvaconclusions about

the usage of all elements in a cache block.dkample, the
compiler may belige that it can orchestrate communication
for a(513,1). Havever, it may not be able to ask the run-
time to manipulate access permissions to the block that con-
tainsa(513,1), because the compiler may natehary guar-
antees for accesses #(1,2). This problem does not
manifest itself for compilers tgeting message-passing
machines. The synthesize a global space from vpte
memories, so there is no notion obtarray locations resid-

ing in the same shared-memory block. Second, the compiler
and the coherence protocol must share a simple representa-
tion of blocks that are under compiler control. ®plkcit

listing of blocks can introduce impractically high run-time

In mary programsp andq repeatedly perform this commu- overhead. A summayyunfortunately introduces impreci-
nication, say in a time-dren loop. Assume that the memory sion. Subsequent sections discuss the design choices that we
location in question is neither read, nor written by ather made to address these issues.

processar In this situation,p could directly send a me

value tog, provided a send primite is aailable. As long as

p and q directly communicate and no other processor 4 Compiler-Or chestrated | ncoherence
accesses the location, the systeditectory need not track

the current state or contents of the block (see Fipimg. A compiler has three tasks in our approach. First, it per-
To end this phase, processprandg male their local state  forms analysis to calculate the read and write sets for arrays
consistent with the directory information. The preceding accessed in parallel loops. Second, it generates calls to the
discussion is someéhat over-simplified for explanatory pur- coherence protocol, so certain data transfers run mfire ef
poses. Sectiod.2 describes the contract between our com- ciently—this forms the core of our technique. Third, it opti-
piler and protocol in detail. mizes the placement of these calls.

As an &ample, consider the common cases of a producer
consumer relation in which a block of data is written by pro-
cessorp and subsequently read by procesgoror the
moment, assume that a bloglsize is equal to the size of
the \alue being transmitted. Furthermore, assume \aliin
dation-based protocol (general update-based protoceds ha
analogous problems,ub details are omitted for brity).
Figurel(a) shavs a typical sequence of coherence actions
for this transferAt all times, the directory (a data structure
maintained at thdhomenode) must correctly capture the
state of the block, becauseyasther processor is free to join
the fray by accessing the location. Figlifa) also illus-
trates our defult protocot.

Tempest is an inteate preided by a shared memory sys-

tem that allovs coherence protocols to be written as user 4.1 Access |nformation
level code, by =posing the follving primitives. (1)
Locally mapping remote pages in the shareprsnt, so the
program can use global virtual addresses. (2) Fine-grain
access control, which alis i nval i d, readonly, or
readwr i t e protection on indiidual blocks. An access to

i nval i d block, or a write access tor@&adonl y block
invokes a usespecified &ult handler (3) Fine-granularity
low-latenyy messages. Ordinary protocols that implement The data distribtion determines thewner relation: an
transparent shared memory use all three mechanisms to prarray elemend(i,j) is awvned by a processgy if it logically

vide the desired consistgnmodel. Our compiler goes fur- resides on the processprlt is important to bear in mind
ther and directly imokes fine-grain access control and thata(i,j) may hae its home on gnprocessor in the system,
messaging primities, to bypass the @eflt coherence pro-  since the home is not necessarily the same asathetdVe
tocol in certain cases. currently mak a simplifying assumption for data distrib
tions: only the last dimension of a global array is digtel
(either blockwise oryxlically) on a linear arrangement of
processors. Multi-dimensional distuitions, e.g.

I\)ﬁ BLOCK, BLOCK), can sometimes reduce the=tall wol-

ume of communication. Our scheme could still optimize
communication along the last dimension—one approach to
optimizing the remaining communicatiorould be to cop

1. This protocol tries to hide some write latgwith a release-con-  the boundary data into contiguousffiers and then optimiz-
sistent memory model. &dler memory models help pipeline ing the luffer transfer
coherence messagesit o not necessarily reduce their number

Compiler based techniques such as ours directly reduce the num-The computation distrition is usua”y wnercomputes
ber of coherence messages. . . . L
but this is not a restriction in our scheme. A compiler can

The compiler must determine the sections of arrays that are
read and written in each parallel loop, so it can find the
communication iwolved in eecuting the loop. Further-
more, this computation must &knto account the disttib

tion of the arrays (as specified by user dik@s) and the
computation distribtion of the parallel loop.

In principle, we should be able to completely bypass the
default coherence protocol when perfect information about
readers and writers isailable for an application. Keever,
some practical problems must be addressed. First, real DS
systems maintain coherence on blockgdarthan a single
word. A particular block can holderal array alues, gen




use the programmesupplied] NDEPENDENT directve to protocol. These boundary cases could be optimized with
partition a loop in an fashion, e.g. blockwise by loop- advisoryprimitives, such as selfyalidate and co-operag
index, or according to a@N HOVE directve. prefetch [14], which may beavthwhile when the compiler
managed data set size is small. It is also possible that there
are no accesses td-section elements residing in boundary
blocks. Compile-time analysis to determine this property

accessed in a parallel loop, it computesrtbe-ownefread . )
X . . must mak assumptions about starting addresses of arrays
andnon-owneswrite sets by taking the set fiifence of the . i ;
and the block size. @have not eplored this option yet.

array sections that a processor reads or writes and the array
sections it wns. If these sets are null, nalwes need be Figure2 shavs hav our compiler modifies the cailt pro-
transmitted. In a fine-grain DSM, the only communication tocol for a non-wner read reference. These calls are pro-
that would then tak place is due tafse sharing caused by duced for each nonwmer reference in a loop. Similar calls
multi-word bIOCkS, which in most cases occur at the bOUnd'for different references are grouped together to share syn-
ary elements of array columnseWo not optimize for these  chronization. The first run-time calkhmem linits,
boundary casésBy contrast, the Ige size of the coher-  establishes the restricted limits, as describedv@band
ence unit in page-based DSMs can introduce significantietyrns a communication descriptor (Figaed. We also
communication due toafse sharing, and it is important to  pass the alues of symbolicariables to these run-time calls,
optimize for it [9]. where thg provide input for the analyticaressions gen-
Our implementation uses Marylas®mega library [25] to ~ €rated by the Onga library Tablel summarizes the
compute these sets. Although the kind of sections we opti-fémaining cglls and the rauonalg for the additional synchro-
mize could be represented by traditionajuler section ~ Nization, which are further described helo

descriptors (RSD) [13], the Omee library enabled us to
avoid the significant implementationfeft required to hild

Based on the data and computation digtiins, the com-
piler computes access setsorFeach distribted array

Table 1. Run-time calls and their fefct

a rolust RSD pa(_:kage. In addition, the_ Quadibrary han- Run-time Call Effect
dled symbolic ariables that appeared in our test cases, as
well as lept access sets parametric with respect to processoy o Calculate the starting and ending
number To obtain a succinct representation of the blocks to | STmem_limits cache block.
take under compiler control, our optimizations only apply to : -
array sections that can be shm at compile-time, to form mk writable Owner brings all the blocks in the
contiguous virtual addresses.eWalso allev two-dimen- B range in &clusie mode.
sional sections, represented as contiguous ranges separated Readers makthe specified
by a fixed stride. Omga library can be directed to generate | . . blocksr eadwr i t e, so thg can
C code as a static representation describing such sets: at'mpl'c't—Upgrade store the incoming data without ap
run-time we inoke these code-fragments with theues of accessdult.
_symbollc \ariables to obtain the bounds of the correspond- - Readers makthe specified block
INng access sets. implicit_invalidate . .

invalid.
4.2 Overriding the Default Protocol send 8":{,‘:;2??:3 :Zstgic('ff.S)b"’Ck’
This section describes the run-time calls generated by ouf Readers it until the apected
compiler based on the information collected in the first | yeady to recv number of blocks hae been
phase. W first post-process this information to determine received and stored.
contiguous ranges of cache blocks that can bentalkder - —
compiler control. Recall from Secti® that due to multi- flush Writer sends the specified blocks
word block size, we must be careful when taking a particu- to the avner

lar block under compiler control. If the array sectagm:n)

is a candidate for optimizations, we select the subsetThe oerall goal of this optimization is to makion-evner
a(my:ng), such thatmyy = mandny < n, anda(my) anda(ny) blocks aailable before a parallel loopecutes, so that no
fall within closest flttlng block boundariesoftwo-dimen- accessdults occur during the |00poFthe moment, ignore
sional transfers, this subsetting requires iteratioer ahe non-avner writes. V& designatewners to send the refent
higher dimension. The boundary cases are left to tleillef  pjocks to the readers. Senders and the versineed to

1. Itis possible to specify data distifions in which underwner make certain preparations before this transfer care tak

computes rule there will be significantlde-sharing, e.g. place:
(CYCLI C, *) with column major addressing.e\do not address

that problem here. Anderson et al. [2] present one approach 10 (1) Since the wner is not necessarily the home node, there
mitigate that gect. ) "
is no guarantee that thevoer has a cgpof the block it




must send to potential reader(s). Therefore vallays must current (and only) alid copy, thus relieing the actual
first bring the rebeant blocks to readable state in their home, if it is not thewner, of responsibility of carrying a
cached. Moreover, in anticipation that the vaners will valid copy. We will emplgy this obseration momentarily

eventually write ne values, we actually bring the refnt (2) In Tempest, readers requireadw i t e permission to
blocks into the writable state before initiating the transfer store incoming data (as foryastore). In ordinary @mpest,
An important side déct of this step is that the directory Ccoherence protocols, a read-miss handler emak block

information for these blocks records that thener has the ' &adwite f<_)r the purpose of reoéhg _the incoming
data, then switches the access permission backeéo

1. There is no replacement from this cache—it is safeamanaged donl y after the data has been stored. In com;m'dm—
remote data in main memory N
trolled coherence, heever, the blocks being broughtver

Owner Reader & Home for page i Owner Reader&  Home for page i
Home for page (i+1) Home for page (i+1)
N i ALE 7 lldle]
amH N 7 7
T . a(m) I [IdIe] [Excl(owner)]
page ', blocksin L 7/
$page (+1) | ||compiler G [Idle] [Excl(owner)]
__||control 6
¥/ [ldle] [Excl(owner)]
a(n)=iva(ny) ~
A. Initial State, and shrem_| i mi t s. Annotations next to D. Aftersend and ready_recv
blocks at the home nodes, e.g. [Idle], denote directory state. -
--------- LOOP COMPUTATI ON---------
Owner Reader & Home for page i Owner Reader&  Home for pagei
Home for page (i+1) Home for page (i+1)
] 7 [idie] [ReadShared]
/
[Excl(owner)] a 2 [Excl(owner)]
| '/ 4
[Excl(owner)] 4 ¥, [Excl(owner)]
i 7 /
[Excl(owner)] ¥/ [Excl(owner)]
i / /
B. Aftermk_wri t abl e E. After the loop executes. Note that the reader has accessed

locations a(m) to a(n), making the first block read-shared.

i Reader & Home for page i
Owner Reader & Home for page i Owner .
Home for page (i+1) Home for page (i+1)
¥/ [ldle] [ReadShared]
/
I [Excl(owner)] [Excl(owner)]
[Excl(owner)] [Excl(owner)]
[Excl(owner)] [Excl(owner)]
C. Afteri npl i ci t _writ abl e. Note that the directory F Afteri npl i ci t _i nval i dat e. The directory state is
state is not consistent in the compiler controlled blocks. consistent once again.
-------- BARRIER SYNCHRONIZATION-------- --------BARRIER SYNCHRONIZATI ON-------

Legend_Jinvalid PZZAreadw it e readonly

Figure 2: The run-time calls and theirfett on block states.



are under xplicit control, and the compiler care&p them
in whichever state it prefers. In our system, these blocks
haver eadwr i t e access permission, to reduce the need to

change access permissions. After the parallel loopxes e nA1(I<rﬁy¥]r)|tabIe T(krﬁ\:/;/]r)nable
cuted, the compiler iralidates these blocks. i

Steps 1 and 2 must be ordered. Since a reader may be the loop 1 A(m:n) = ... loop 1
home node of a block, step 2 may destite only cog in

the system. Hoever, step 1 guarantees that thener pro- é é\‘ v
cessor has aalid copy of a block. A barrier synchronization

ensures that step 1 completes before starting step 2. X - =A9())
Step 1 is implemented byn& _wr i t abl e call on an spec- l l

ified range of blocks (see Figu28). The protocol inter- mk_writablex | | mk_writable * v
prets this call as if a writea€ilt occurs for all blocks in the A(m:n) A(m:n) mk_writable
specified range,xeept that theseafilts are pipelined. The loop 2 loop 2 A(m:n)
second step, after synchronization, is implemented by an

implicit_witabl e call (Figure2C). This call sets the loop 2
access permissions of all blocks in the specified range to @) (b) ©

readwite. _ . L -
Figure 3: Exploiting availability of access permissions. Ca

Another synchronization after step 2 guarantees that both marked with an asterisk (*) are redundant. (a) and (bws
the senders and reuers are ready for the transfdrhe examples ofgererating the e_a_ilability of access permission
senders ship the refent blocks to the reogirs with a and (c) shars hav the aailability can bekilled.

send operation on a range of addresses and a list of desti- uent parallel loop has the same computation ditcib as
nation ids. The underlying protocol sends the blocks in spe-q b b P

. - . an earlier loop, blocks'vaners already ha the blocks in
cially tagged data messages to each recipient. Eaclheecei . L . . ) .
writable condition (assuming no inteming read imoked

POStS ¥ eady_t 0_f ecv call, which hc_)lds den a count- default coherence actions). Therefore tile wri t abl e
ing semaphore until all blocks V& arrived. As a further -
call can be eliminated from the second loop.

optimization, we group contiguous blocks and transfer them
in larger payloads than a single block. This optimization We cast this obseation as a data-flo problem, similar to
provides the benefit of lger block sizes, and accounts for available epressionanalysis. Whin a given subroutine,
almost half of the net reduction in prograreeution time our data-flev universe is the set of norwmer array sections
achieved using our techniques. At the conclusion of this transferred under compiler controlo Bimplify the data-
data transferthe non-wner data has been transferred in (at flow analysis, we treat sections as visible entities and do
least) readable state (Figizb). not analyze thewailability of parts of sections [12]. An ele-
ment in this unierse isgererated when a parallel loop
invokes ark_wr i t abl e call that contains the section rep-
resented by the element. It is atgrerated when a parallel
loop causes thewmer to write all cache blocks in the sec-
tion—the writes bring the corresponding cache blocks into
readw i t e state (see Figui®. An element ikilled by a
“stray” non-avner read, since a read reference that is not
under compiler control can eage the defult protocol and
destry the condition that the cache block is riead-

writ e state at thewner This data-flav problem is then
Finally, consider noniwwner writes. In this case, thevoer solved in the usual iterat manngrand redundant calls to
has to send the block to the writrst as in the nonvaner mk_writabl e are eliminated. Consequentihe barrier
read case. The only @fence is that at the end of the loop, that enforces the completion of the redundant call before the
the writer musf | ush its changes back to thevoer and ~ next run-time call is also renved.

implicitly invalidate its cop, so that the wner has the only
latest (writable) cop of the block.

After the parallel loop »xecutes, the directory for a com-
piler-controlled block records that the block is ktkisive
state at the processor designated as sender (RBur&his
information does not reflect the correct state daied,
because readers alsovhaa writable cop of those blocks.
Without information about future data accesses, waliin
date readers’ copies with an nplicit _invalidate
call to the protocol (FigurgF). A final barrier ensures that
the memory is aajn consistent with the directory

A similar scheme could alsox@oit the aailability of

already fetched remote data, and thus elimisatied and

ready _t o_recv pairs. Recent literature on compilers for

4.3 Reducing Run-time Overhead message-passing machines reports on this optimization
[12]. If there is no interening write to the same nonvoer

All run-time calls inserted by the compiler need notxe e read data between owoops, it need not be re-communi-

cuted @ery time a loop xecutes. Br instance, if a subse- cated at the second loop.eWtan also eliminate some



inplicit_invalidate andinplicit_witable calls 6 Results
that would be redundant along all possibkeeutions.

We studied eight HPF application coYelisted in Bble3
along with their problem sizes and disttiion of primary
arrays. The first six applications argu&ar programs col-

Unfortunately we require interprocedural analysis tovdra
full benefit from this frameork, as most of the codes are

(J:ustifiably) writtep in terms Qf subroutines. Our current lected from wrious sources. The communication fide

(intraprocedural) implementation rewes only the redun-  gna0y gray, cg, andjacobi consists clusively of shifts

dantmk_wr i tabl e calls, and reduces paralletegution  4nq reductionsLu is a triangular sokr that broadcasts a

time by only up to 3%. pivotal column—a dierent one in each iteration—to all
processors. In this application, each processor accesses
almost the entire input data set. It, therefore, spends signifi-

; cant time mapping remote pages on its first runisdlate
5 Exper imental Platform this efect, we report data collected on the last 5 of 6 runs of

] . ] ] ) the application (the first run took 30% more time than later
Our eperimental platform is a Blizzard implementation runs).

running on a 16-node cluster of SparcStation2kata-
tions, connection by a Myricom Myrinet high speed net- Table 3: Application Suite
work. The Blizzard implementation in this study uses a
custom memory+s deice to accelerate fine-grain access
control [27]. Blizzard implementations that do not use this

Application Problem Size & Distributions

pde grid size 128, 40 iterd)REL AX routine only)

device «ist, lut are somwhat slaver. (*,*, BLOCK)
Table 2: Wisconsin COV (Cluster of VWrkstations). shallaw 1025x513 grid, 100 iters

(*, BLOCK)

Processor 66 MHz HyperSRRC (2) oo grid size 128, 5 iters

Network Interface Myricom’s Myrinet (*,*, BLOCK) and(*, BLOCK)

Minimum roundtrip lateng 40U U 1924X1024 matrix (5 runs)

for short (4 bytes) message H (r.cva g

Network bandwidth 20 MB/s cg 180x360 matrix, corerges in 630 iters
(*, BLOCK)

Read miss processing time . -

for 128 byte block (2 cpu) 93us jacobi (294‘21((23828 matrix, 100 iters

) ) Ic 8192 ariables, 0.5% sparsity
The de#ult coherence protocol (written completely in soft- P ( BLOCK)

ware as unpvileged code [5]) is an eagewalidate, multi-
ple-writer, release consistent protocol. It attempts to hide | moldyn
write latengy by not waiting for a write anership grant

from a home node. At synchronization points, a nodé w
for all its pending transactions to completee Wigmented  The final two applications, written locally by the authors,

the protocol to support the primiéis from Section 4.2. are irrgular programsLcp solves the linear complementar-
ity problem on a sparse matrix. It has array subscripts that

Since our wrkstation nodes are dual-processae can are themselws distriluted array references. Communication
either dedicate a processor to protocol processing or interin Icp arises from tw sources: it accesses a disitéd array
leave protocol processing with computation on a single pro- of non-zero elements through an array subscript,
cessor (ignoring the second processor altogether—ad(1A(1)), leading to elemental communication; and, it
computation is avays performed only on one processor). performs all-to-all Bchange of the solutioneetor leading
The second processor should baved as an accelerator for {0 Proadcast communicatiomoldynis ann-body code that
protocol processing—alternagi high-end designs include a performs molecular dynamics calculations. Itsgiarity

dedicated protocol processor on the memory controller [19] arls?s froml md:refct refer?nczzltlo a ?Amﬁu array repre-
or the netwrk interface [26]. V& report results for both senting molecule lorces. In additianpidynrequires a gen-

configurations to valuate the benefit of our optimizations eralized reduction, which cannot be directhpressed as a

for two reasonable System design po|nmb|§2 summa- 1. We hae put the applications used in thionk at the web site
. . http://lwww.cs.wisc.edu/~wwt/hpf/apps.html.
rizes releant details of our system.

8788 molecules, 30 iters (graptilbtwice)
( BLOCK)




parallel operation in HRFand therefore, is implemented 50% or more on 16 nodes. &vin the irrgular application
externally. Icp, our optimizations impned the phase thaixiibited

The problem sizes of the applications used in oges- only regular references.

ments ran for 50-400 seconds on a single processor node. As expected, the single-cpu shared-memoeysions run

For each application, we present speedups on our 16-nod§/ver than the dual-cpuevsions. W reiterate that the
cluster both for single-cpu and dual-cpu configuration of dual-cpu ersions used the second cpu only for protocol
the Tempest implementation. &\also present the speedups Processing purposes. Computation still ran on only one pro-
obtained by PG& message-passing compiler (ported to use €SSOr in all ersions.

Tempest messages, which weastér than IP). Although the e most notable result from thisgeriment is that, »eept
nodes contained wvprocessorpghpf(version 2.0) did not ¢4 1, optimized shared memory performed almost as well
benefit from the ;econq processas it QOes not attempt to ¢ message passing orgutar programs and priled
overlap computhon W|th_ communication. All s.pe.edups are yespectable speedup on guéar programs. Surprisinglgg
calculated relatie to a uniprocessor run on a similaorik- failed to produce good speedup on message passing—we

station, albeit with more (96 M) phical memoryso N0 36 not yet been able to isolate the cause of this anomaly
applications pages. The uniprocessor codes do not ingur an

parallelism @erhead, bt they were not blockd for optimal Figure5 shavs the efiectiveness of our optimizations at
cache performance. reducing cache misses and reducing communication time
for the dual-cpu case.The single-cpu casevsldoqualita-
tively similar behwaior, so we do not report those numbers
here. Cache misses included read misses, write misses, and
accessdults caused by stores to read-only blocks. The com-
munication time included the time during which the compu-
tation was suspendedaiting for remote data oraiting at a
barrier We lumped synchronization time with miss time,
$ecause miss processing timewhaip partly as increased
wait at barriers, which auld be misleading to include as
synchronization time. ifne spent in ®ecuting reductions
Figure4 shavs the werall speedup impk@ments for the  (which are implemented usingwelevel messages) is also
eight applications. Garall improrements are quite encour- counted as communication time. The communication time
aging. All optimized ersions, rceptgray, had eficiency of in the optimized &rsions includes the time spent in run-

Message passingonked well for all rgular applications in
our suite. Havever, pghpf (2.0) generated inner loop com-
munication in the irrgular applications that made parallel
execution impractical. The situation might impeoif the
compiler emplged the alternate of broadcasting complete
data sets. Heever, we do not gpect that this stragy will
produce good speedups either (data in [7] corroborates thi
intuition). Bothlcp andmoldynwould benefit from inspec-
tor-executor technique.
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Figure 4: Speedups for single-cpu, dual-cpu shared mematly and without the coherence optimizations. Speedups obtaine
with PGI's message-passing backl are also reportedxfeectlcp andmoldyn which could not be parallelized well).
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Figure 5: Bar charts shweing reduction in misses and reduction in communication times. The normalized miseeshsho
unoptimized miss count wlided by the optimized miss count. The normalized communication timeg gfe unoptimized
communication time dided by the optimized communication time. The numbers on top of the unoptimized communicatior
bars shw the percentage of communication time in the total progsaoution time in the unoptimized case.

time calls to the protocol, in addition to pieusly men- compiler directly deposits the incoming data into tlé
tioned werheads. array and eliminates this loop.

All regular applications, xeept gray, shav a significant  pde shallow cg andjacobiare rgular programs, with rela-
decrease in the number of misses, which demonstrates thfﬂve|y |arge columns shared between processors in a pro-
our approach é&éctively puts most of the communication ducerconsumer relationship. Our techniques are ideally
under Compiler control. The remaining misses are due tOSuited for these cases, and we get good Speedmpwm

both first access (cold misses) and the edge cases in ea@ple to eliminate a Ige fraction of the misses and signifi-
array sectionGrav shavs a shortcoming of our approach. A cantly decrease communication costs.

significant fraction (62%) of its misses are not reath
because the arrays grav are rather small (129x129 reals
and 129x129x129 reals), and thus the edtgrtsf are pro- .
nounced at 128-bytes cache block size. The cost of addi-7 Conclusion
tional synchronization outweighs the benefits from the
coherence optimizations. Mones, grav executes a lare
number of SUM reductions, which, althougHiaéntly
implemented, ultimately limits speedups for both share
memory and message passing.

This paper describes amenethod for optimizing commu-
nication in rgular HPF programs running on a fine-grain
d distributed shared memory system. Our approach uses static
program analysis in a compiler to identify cache blocks that
are candidates for protocol optimizations. A contract
Lu performs LU-decomposition, which broadcastsvefgail between a compiler and the systencoherence protocol
column to all processors in each iteration. Since the loop isprovides the means by which the compiler manages com-
triangular the size of this column decreaseerthe itera-  munication for these blocks. By transferring contiguous
tions. In the final columns, the edgéeets limit the eficacy blocks in llk and eliminating run-time coherenceeo-
of our optimizations. Although theverall miss counts  head, compiler management yields substantial performance
decreases by 85%, and communication costs by about 50%mprovements on a suite of HPF application codes. The
shared memory is still not aast as message-passing for most important consequence of this imgment is that it
this application. The message-passpatipf(2.0) compiler  males shared memory competéiwith message passing on
eliminated an inner cgploop, which we could not rerie regular applications, while not fatting (or in some cases,
from the shared memoryexsion. The program reseis the  even impraving) its eisting adantage in irrgular codes.

pivotal column into a pvate arrayol :
o _ o Our techniques can be directly applied to other systems that
FORALL (J =i +1:N) col (J) = a(j. 1) implement fine-grain shared memory in safte; such as
This loop eecutes on all nodes under shared memory Flash [19] and Shasta [30]. ttever, this work also shws
(although the communication is optimized) wwer, PGI's that fully customizable coherence protocol are not neces-



sary to optimize mgular communication. Our compiler only
requires a limited set of primites that bypass the general
coherence protocol. /belive that most emgmng com-
mercial parallel systems will pvae fine-grain shared
memory and optional &ys to bypass global coherence. This [10]
work motiates these bypasses by whm that a compiler
can eploit them to significantly impne the performance
of shared-memory applications.

In future, we plan to compare thdegftiveness of semantics
preserving primittes, such as prefetch and poststore,
against semantics altering primiéis, such as the ones used
in this studyWe also plan tox@¢end our technique to handle

more general data disttibons.
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