
Abstract. Unlike compiler-generated message-passing
code, the coherence mechanisms in shared-memory systems
work equally well for regular and irregular programs. In
many programs, however, compile-time information about
data accesses would permit data to be transferred more effi-
ciently—if the underlying shared-memory system offered
suitable primitives. This paper demonstrates that coopera-
tion between a compiler and a memory coherence protocol
can improve the performance of High Performance Fortran
(HPF) programs running on a fine-grain distributed shared
memory system up to a factor of 2, while retaining the ver-
satility and portability of shared memory. As a consequence,
shared memory’s performance becomes competitive with
message passing for regular applications, while not affect-
ing (or in some cases, even improving) its large advantage
for irregular codes. This paper describes the design of our
implementation and reports experimental results.

1  Introduction

Parallel programs running on shared-memory multiproces-
sors often spend considerable time waiting for the underly-
ing memory system. This overhead is particularly acute for
programs with false sharing or poor locality of reference.
Another well-known source of overhead is the fixed cache-
coherence protocols used in shared-memory multiproces-
sors. For example, transferring a single piece of data from a

writer to a reader processor may require four or more mes-
sages (see Figure1) [10]. A recent study by Torrie et al. [32]
showed that memory system overhead could account for
more than 30% of the execution time of a suite of compiler-
parallelized programs. The underlying problem is that con-
ventional multiprocessors provide only a single, fixed
coherence protocol to communicate values among proces-
sors. Unfortunately, no protocol performs well in all cir-
cumstances. In these systems, software cannot avoid
coherence overheadper se, although many latency reducing
and tolerating techniques have been proposed [11,22].
Moreover, on cost-effective systems that implement shared
memory on a cluster of workstations [1,31], higher commu-
nication latencies make coherence overhead even more tax-
ing.

Shared-memory systems are beginning to provide alterna-
tive ways to speed data transfers, which range from new
memory operations to the option of bypassing the coherence
protocol. All-hardware systems provide simpler operations,
but a multiprocessor can provide memory system opera-
tions—such as poststore [29], co-operative prefetch [14],
self-invalidate [14], or store-and-forward [18]—that a pro-
grammer or compiler can use to improve performance. Sys-
tems that implement coherence in software—such as
Typhoon [26], Flash [19], Shasta [30], and most page-based
systems [1,3]—can go further and offer message-passing-
like communication primitives or customizable protocols.
Even some commercial shared-memory multiprocessors,
such as STiNG [21], offer some support for data transfer
mechanisms beyond a fixed coherence protocol.

This paper describes a compiler-directed approach to
exploiting improved communication mechanisms. Our work
focuses on HPF programs running on a fine-grain distrib-
uted shared memory (DSM), though the approach is more
generally applicable. In particular, we show how static pro-
gram analyses previously developed to compile for mes-
sage-passing systems [28,33] can also identify opportunities
for efficient value transfer in shared-memory systems. Our
HPF compiler uses these analyses to identify cache blocks
for which efficient communication is both beneficial and
safe. It then inserts run-time calls that explicitly manage
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communication for these blocks. In the parts of program in
which the necessary preconditions for data accesses cannot
be found at compile-time, our system allows the default pro-
tocol to manage communication. A key contribution of this
work is the development of a contract between the compiler
and coherence protocol, so they can co-operate to reduce
data-transfer costs for data structures and program phases
where static analysis permits. Our techniques are appropri-
ate for fine-grain shared-memory systems, as they bypass
the default coherence mechanisms on small amounts of
data. Page-based systems require a somewhat different
approach, though the compiler analysis is similar.

The approach that we advocate, shared memory with coher-
ence optimizations, offers the important benefit of greatly
expanding the domain of HPF programs that can be written
and compiled effectively. This expansion is made possible
by combining the efficiency of message passing with the
flexibility of shared memory. In our system, the compiler
communicates cache blocks through explicit message pass-
ing, which bypasses shared-memory communciation over-
heads. This results in near-message-passing performance
for regular programs.

Although compiler-generated message passing works well
for regular programs1, it fails for programs containing
irr egular references. Irregular references inside a parallel
loop2 force a compiler to either generate scalar messages
inside the loop, or pay for extraneous communication—
potentially broadcasting the entire data set. Both these
options lead to poor performance [28,7]. In special cases, a
compiler can use theinspector-executor technique [17],
which ultimately implements a shared memory view of
selected arrays [23]. But, a system-provided shared-memory
layer frees a compiler from the straitjacket of precise static
analysis and permits irregular programs to run efficiently.

To demonstrate our approach, we modified a commercial
HPF compiler—the Portland Group’s pghpf—to generate
simple shared memory code [4] and to perform the commu-
nication analysis necessary to insert run-time calls to our
extended coherence protocol. Our target is the Blizzard sys-
tem [15], which implements distributed shared memory at
the granularity of cache blocks (e.g. 32-128 bytes) and
enables application code to provide its own coherence pro-
tocol. We performed our experiments on a Blizzard system
running on an 16-node cluster of SparcStation20 worksta-
tions connected by a high speed network (Myricom Myri-
net). Our results show that optimizations reduced the overall
execution times by up to 45% on a suite of 8 regular and

1. Programs in which all array subscripts are affine functions of sur-
rounding loop indices and precise communication analysis is pos-
sible. Complicated control-flow inside loops can sometimes
obstruct analysis on seemingly regular references.

2. A loop that has no loop-carried dependence and hence all its iter-
ations could run in parallel. This could either be inferred by the
compiler, or a programmer could declare a loop to be parallel by
using anINDEPENDENT directive.

irregular HPF applications. On regular programs, most opti-
mized execution times are competitive with pghpf’s default
message-passing performance. Moreover, unlike pghpf, we
also achieved good performance on the irregular programs
in our application suite.

Although remote memory references in Blizzard running on
the cluster of workstations are costly in absolute terms
(~100µs), they do not differ from modern hardware shared
memory systems nearly as much when measured in instruc-
tions. Emerging parallel systems generally provide fine-
grain shared memory. This work demonstrates that these
systems should also provide coherence protocol bypasses
that a compiler can exploit to improve the performance of
shared-memory applications.

The paper is organized as follows. Section2 discusses
related work. Section3 provides background materials on
coherence protocols and discusses the opportunities for
coherence optimizations in fine-grain distributed shared
memory. Section4 describes our compilation model and the
interface to the coherence protocol. Section5 presents our
experimental setup. Section6 presents detailed experimen-
tal evaluation of our technique.

2  Related Work

Our techniques closely resemble those used by Dwarkadas
et al. [9] to optimize coherence overhead on a page-based
DSM system. Both compilers exploit well-known tech-
niques for static array analysis to make data transfer cheaper
by reducing coherence overhead and performing sender-ini-
tiated transfers. However, Dwarkadas’s techniques are tar-
geted at page-based DSMs (such as TreadMarks[1]). In
TreadMarks, detecting and preparing for writes (twinning)
are expensive operations. Not surprisingly, the most profit-
able optimization is to prevent write-faults from occurring.
Dwarkadas found that sender-initiated transfers yield minor
benefits. By contrast, in fine-grain shared memory systems,
such as ours, the cost of gaining write-ownership is far
lower, so we optimize for the delays in true sharing.

Furthermore, Dwarkadas’s compiler analysis requires and
uses only localized access information between program
barriers. This choice is appropriate to compile a phase of an
explicitly parallel program. However, since we focus on
compiler-parallelized programs, further optimizations are
possible. In compiler-parallelized programs, work distribu-
tion is determined at compile-time and typically follows the
owner-computes rule [28] (although our scheme can handle
other computation distributions as well). This compile-time
analysis enables us to track the movement of cache blocks
across parallel loops, and allows us to consider for optimi-
zation only the blocks containing array elements that are
involved in producer-consumer relationships. Without such
global information, the compiler has to apply coherence



optimizations toall blocks accessed in a parallel loop. How-
ever, in Dwarkadas’s work, the runtime system keeps track
of modified pages and avoids the cost of validating such
pages. Second, we exploit the availability of fine-grain
access permissions to reduce the cost of coherence-manipu-
lating calls to a protocol (Section4.3). Although these calls
may not incur a large overhead on a page-based system,
fine-grain systems have many more transfer units (cache
blocks).

Keleher and Tseng [16] reduce miss time on their page-
based DSM by flushing modified pages to prospective read-
ers, as opposed to having readers fetch them on a reference
(e.g., poststore). They also use compiler analysis to find a
set of pages that are communicated in a stable pattern,
although the actual detection of producers and consumers is
left to a run-time system (they observe that this could be
done by a compiler). In contrast with Dwarkadas’s and our
work, their approach does not relax the system’s coherence
to permit a compiler to control all accesses to shared data.
When applicable, we use precise compiler analysis to iden-
tity the blocks that need to be send from a writer to readers
and then bypass coherence protocol when possible.

Another, proposed group of machinesrequire software
involvement to maintain coherence [24]. Software cache
coherence raises difficult problems in identifying exactly
how long to keep a value in the programmable cache and
when to fetch a new value. Several researchers have studied

compiler techniques for this problem [8,6]. However, these
schemes are intrinsically conservative and must work for all
data accesses—rather than the selected ones on which we
focus—so they often suffer from excessive invalidations and
re-fetches. In our system, a default protocol automatically
fetches the latest value at a read: we only seek to make this
transfer more efficient.

Larus et al. [20] used compiler-controlled incoherence to
efficiently implement a data-parallel language. Their fine-
grain, copy-on-write protocol for specially marked blocks
reduce the high copying overhead necessitated by conserva-
tive static analysis. By contrast, we use compiler-controlled
incoherence to make statically identifiable communication
more efficient.

3  Coherence Overhead & Optimization

A typical coherence protocol supports two functions. First,
it satisfies a load operation by shipping the current value of
the requested location to the faulting node, in a manner
transparent to the program. Second, it maintains currency of
values by either invalidating, or updating existing cached
copies when new values are written. Details, such as how
soon a reader can expect to see a newly written value, vary
according to the consistency model underlying the protocol.
An important limitation of coherence protocols is that

Figure 1: (a) Default coherence scheme. Notice the number of messages required to transfer one block. The messages
are as follows: 1. read-request 2. put-data-request 3. put-data-response 4. read-response 5. write-request 6. invalidation
7. acknowledgment, and 8. write-grant. (b) Direct update message to the reader. Note the reduction in the messages. A
final step is required to ensure coherence.
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respond to memory references, without global knowledge of
a program’s memory accesses.

As an example, consider the common cases of a producer-
consumer relation in which a block of data is written by pro-
cessorp and subsequently read by processorq. For the
moment, assume that a block’s size is equal to the size of
the value being transmitted. Furthermore, assume an invali-
dation-based protocol (general update-based protocols have
analogous problems, but details are omitted for brevity).
Figure1(a) shows a typical sequence of coherence actions
for this transfer. At all times, the directory (a data structure
maintained at thehome node) must correctly capture the
state of the block, because any other processor is free to join
the fray by accessing the location. Figure1(a) also illus-
trates our default protocol1.

In many programs,p andq repeatedly perform this commu-
nication, say in a time-driven loop. Assume that the memory
location in question is neither read, nor written by any other
processor. In this situation,p could directly send a new
value toq, provided a send primitive is available. As long as
p and q directly communicate and no other processor
accesses the location, the system’s directory need not track
the current state or contents of the block (see Figure1(b)).
To end this phase, processorsp andq make their local state
consistent with the directory information. The preceding
discussion is somewhat over-simplified for explanatory pur-
poses. Section4.2 describes the contract between our com-
piler and protocol in detail.

Tempest is an interface provided by a shared memory sys-
tem that allows coherence protocols to be written as user-
level code, by exposing the following primitives. (1)
Locally mapping remote pages in the shared segment, so the
program can use global virtual addresses. (2) Fine-grain
access control, which allows invalid, readonly, or
readwrite protection on individual blocks. An access to
invalid block, or a write access to areadonly block
invokes a user-specified fault handler. (3) Fine-granularity
low-latency messages. Ordinary protocols that implement
transparent shared memory use all three mechanisms to pro-
vide the desired consistency model. Our compiler goes fur-
ther and directly invokes fine-grain access control and
messaging primitives, to bypass the default coherence pro-
tocol in certain cases.

In principle, we should be able to completely bypass the
default coherence protocol when perfect information about
readers and writers is available for an application. However,
some practical problems must be addressed. First, real DSM
systems maintain coherence on blocks larger than a single
word. A particular block can hold several array values, even

1. This protocol tries to hide some write latency with a release-con-
sistent memory model. Weaker memory models help pipeline
coherence messages, but do not necessarily reduce their number.
Compiler based techniques such as ours directly reduce the num-
ber of coherence messages.

those that straddle dimensions. For example,a(513,1) and
a(1,2) could reside in the same block for a 513x513 array. In
this case, it is not always possible to draw conclusions about
the usage of all elements in a cache block. For example, the
compiler may believe that it can orchestrate communication
for a(513,1). However, it may not be able to ask the run-
time to manipulate access permissions to the block that con-
tainsa(513,1), because the compiler may not have any guar-
antees for accesses toa(1,2). This problem does not
manifest itself for compilers targeting message-passing
machines. They synthesize a global space from private
memories, so there is no notion of two array locations resid-
ing in the same shared-memory block. Second, the compiler
and the coherence protocol must share a simple representa-
tion of blocks that are under compiler control. A explicit
listing of blocks can introduce impractically high run-time
overhead. A summary, unfortunately, introduces impreci-
sion. Subsequent sections discuss the design choices that we
made to address these issues.

4  Compiler-Orchestrated Incoherence

A compiler has three tasks in our approach. First, it per-
forms analysis to calculate the read and write sets for arrays
accessed in parallel loops. Second, it generates calls to the
coherence protocol, so certain data transfers run more effi-
ciently—this forms the core of our technique. Third, it opti-
mizes the placement of these calls.

4.1  Access Information

The compiler must determine the sections of arrays that are
read and written in each parallel loop, so it can find the
communication involved in executing the loop. Further-
more, this computation must take into account the distribu-
tion of the arrays (as specified by user directives) and the
computation distribution of the parallel loop.

The data distribution determines theowner relation: an
array elementa(i,j) is owned by a processorp, if it logically
resides on the processorp. It is important to bear in mind
thata(i,j) may have its home on any processor in the system,
since the home is not necessarily the same as the owner. We
currently make a simplifying assumption for data distribu-
tions: only the last dimension of a global array is distributed
(either blockwise or cyclically) on a linear arrangement of
processors. Multi-dimensional distributions, e.g.
(BLOCK, BLOCK), can sometimes reduce the overall vol-
ume of communication. Our scheme could still optimize
communication along the last dimension—one approach to
optimizing the remaining communication would be to copy
the boundary data into contiguous buffers and then optimiz-
ing the buffer transfer.

The computation distribution is usually owner-computes,
but this is not a restriction in our scheme. A compiler can



use the programmer-suppliedINDEPENDENT directive to
partition a loop in any fashion, e.g. blockwise by loop-
index, or according to anON HOME directive.

Based on the data and computation distributions, the com-
piler computes access sets. For each distributed array
accessed in a parallel loop, it computes thenon-owner-read
andnon-owner-write sets by taking the set difference of the
array sections that a processor reads or writes and the array
sections it owns. If these sets are null, no values need be
transmitted. In a fine-grain DSM, the only communication
that would then take place is due to false sharing caused by
multi-word blocks, which in most cases occur at the bound-
ary elements of array columns. We do not optimize for these
boundary cases1. By contrast, the large size of the coher-
ence unit in page-based DSMs can introduce significant
communication due to false sharing, and it is important to
optimize for it [9].

Our implementation uses Maryland’s Omega library [25] to
compute these sets. Although the kind of sections we opti-
mize could be represented by traditional regular section
descriptors (RSD) [13], the Omega library enabled us to
avoid the significant implementation effort required to build
a robust RSD package. In addition, the Omega library han-
dled symbolic variables that appeared in our test cases, as
well as kept access sets parametric with respect to processor
number. To obtain a succinct representation of the blocks to
take under compiler control, our optimizations only apply to
array sections that can be shown, at compile-time, to form
contiguous virtual addresses. We also allow two-dimen-
sional sections, represented as contiguous ranges separated
by a fixed stride. Omega library can be directed to generate
C code as a static representation describing such sets: at
run-time we invoke these code-fragments with the values of
symbolic variables to obtain the bounds of the correspond-
ing access sets.

4.2  Overriding the Default Protocol

This section describes the run-time calls generated by our
compiler, based on the information collected in the first
phase. We first post-process this information to determine
contiguous ranges of cache blocks that can be taken under
compiler control. Recall from Section3, that due to multi-
word block size, we must be careful when taking a particu-
lar block under compiler control. If the array sectiona(m:n)
is a candidate for optimizations, we select the subset
a(m1:n1), such thatm1³ ≥ m andn1 ≤ n, anda(m1) anda(n1)
fall within closest fitting block boundaries. For two-dimen-
sional transfers, this subsetting requires iteration over the
higher dimension. The boundary cases are left to the default

1. It is possible to specify data distributions in which under owner-
computes rule there will be significant false-sharing, e.g.
(CYCLIC,*) with column major addressing. We do not address
that problem here. Anderson et al. [2] present one approach to
mitigate that effect.

protocol. These boundary cases could be optimized with
advisory primitives, such as self-invalidate and co-operative
prefetch [14], which may be worthwhile when the compiler-
managed data set size is small. It is also possible that there
are no accesses to off-section elements residing in boundary
blocks. Compile-time analysis to determine this property
must make assumptions about starting addresses of arrays
and the block size. We have not explored this option yet.

Figure2 shows how our compiler modifies the default pro-
tocol for a non-owner read reference. These calls are pro-
duced for each non-owner reference in a loop. Similar calls
for different references are grouped together to share syn-
chronization. The first run-time call,shmem_limits,
establishes the restricted limits, as described above, and
returns a communication descriptor (Figure2a). We also
pass the values of symbolic variables to these run-time calls,
where they provide input for the analytical expressions gen-
erated by the Omega library. Table1 summarizes the
remaining calls and the rationale for the additional synchro-
nization, which are further described below.

The overall goal of this optimization is to make non-owner
blocks available before a parallel loop executes, so that no
access faults occur during the loop. For the moment, ignore
non-owner writes. We designate owners to send the relevant
blocks to the readers. Senders and the receivers need to
make certain preparations before this transfer can take
place:

(1) Since the owner is not necessarily the home node, there
is no guarantee that the owner has a copy of the block it

Table 1: Run-time calls and their effect

Run-time Call Effect

shmem_limits
Calculate the starting and ending
cache block.

mk_writable
Owner brings all the blocks in the
range in exclusive mode.

implicit_upgrade

Readers make the specified
blocksreadwrite, so they can
store the incoming data without an
access fault.

implicit_invalidate
Readers make the specified block
invalid.

send
Owner sends the specified blocks
to the named readers (in bulk)

ready_to_recv
Readers wait until the expected
number of blocks have been
received and stored.

flush
Writer sends the specified blocks
to the owner.



must send to potential reader(s). Therefore, all owners must
first bring the relevant blocks to readable state in their
caches1. Moreover, in anticipation that the owners will
eventually write new values, we actually bring the relevant
blocks into the writable state before initiating the transfer.
An important side effect of this step is that the directory
information for these blocks records that the owner has the

1. There is no replacement from this cache—it is software managed
remote data in main memory.

current (and only) valid copy, thus relieving the actual
home, if it is not the owner, of responsibility of carrying a
valid copy. We will employ this observation momentarily.

(2) In Tempest, readers requirereadwrite permission to
store incoming data (as for any store). In ordinary Tempest,
coherence protocols, a read-miss handler makes a block
readwrite for the purpose of receiving the incoming
data, then switches the access permission back torea-
donly after the data has been stored. In compiler-con-
trolled coherence, however, the blocks being brought over
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Figure 2: The run-time calls and their effect on block states.



are under explicit control, and the compiler can keep them
in whichever state it prefers. In our system, these blocks
havereadwrite access permission, to reduce the need to
change access permissions. After the parallel loop has exe-
cuted, the compiler invalidates these blocks.

Steps 1 and 2 must be ordered. Since a reader may be the
home node of a block, step 2 may destroy the only copy in
the system. However, step 1 guarantees that the owner pro-
cessor has a valid copy of a block. A barrier synchronization
ensures that step 1 completes before starting step 2.

Step 1 is implemented by amk_writable call on an spec-
ified range of blocks (see Figure2B). The protocol inter-
prets this call as if a write fault occurs for all blocks in the
specified range, except that these faults are pipelined. The
second step, after synchronization, is implemented by an
implicit_writable call (Figure2C). This call sets the
access permissions of all blocks in the specified range to
readwrite.

Another synchronization after step 2 guarantees that both
the senders and receivers are ready for the transfer. The
senders ship the relevant blocks to the receivers with a
send operation on a range of addresses and a list of desti-
nation ids. The underlying protocol sends the blocks in spe-
cially tagged data messages to each recipient. Each receiver
posts aready_to_recv call, which holds down a count-
ing semaphore until all blocks have arrived. As a further
optimization, we group contiguous blocks and transfer them
in larger payloads than a single block. This optimization
provides the benefit of larger block sizes, and accounts for
almost half of the net reduction in program execution time
achieved using our techniques. At the conclusion of this
data transfer, the non-owner data has been transferred in (at
least) readable state (Figure2D).

After the parallel loop executes, the directory for a com-
piler-controlled block records that the block is in exclusive
state at the processor designated as sender (Figure2E). This
information does not reflect the correct state of affairs,
because readers also have a writable copy of those blocks.
Without information about future data accesses, we invali-
date readers’s copies with animplicit_invalidate
call to the protocol (Figure2F). A final barrier ensures that
the memory is again consistent with the directory.

Finally, consider non-owner writes. In this case, the owner
has to send the block to the writer, just as in the non-owner
read case. The only difference is that at the end of the loop,
the writer mustflush its changes back to the owner and
implicitly invalidate its copy, so that the owner has the only
latest (writable) copy of the block.

4.3  Reducing Run-time Overhead

All run-time calls inserted by the compiler need not be exe-
cuted every time a loop executes. For instance, if a subse-

quent parallel loop has the same computation distribution as
an earlier loop, blocks’ owners already have the blocks in
writable condition (assuming no intervening read invoked
default coherence actions). Therefore themk_writable
call can be eliminated from the second loop.

We cast this observation as a data-flow problem, similar to
available expression analysis. Within a given subroutine,
our data-flow universe is the set of non-owner array sections
transferred under compiler control. To simplify the data-
flow analysis, we treat sections as indivisible entities and do
not analyze the availability of parts of sections [12]. An ele-
ment in this universe isgenerated when a parallel loop
invokes amk_writable call that contains the section rep-
resented by the element. It is alsogenerated when a parallel
loop causes the owner to write all cache blocks in the sec-
tion—the writes bring the corresponding cache blocks into
readwrite state (see Figure3). An element iskilled by a
“stray” non-owner read, since a read reference that is not
under compiler control can engage the default protocol and
destroy the condition that the cache block is inread-
write state at the owner. This data-flow problem is then
solved in the usual iterative manner, and redundant calls to
mk_writable are eliminated. Consequently, the barrier
that enforces the completion of the redundant call before the
next run-time call is also removed.

A similar scheme could also exploit the availability of
already fetched remote data, and thus eliminatesend and
ready_to_recv pairs. Recent literature on compilers for
message-passing machines reports on this optimization
[12]. If there is no intervening write to the same non-owner
read data between two loops, it need not be re-communi-
cated at the second loop. We can also eliminate some

Figure 3: Exploiting availability of access permissions. Calls
marked with an asterisk (*) are redundant. (a) and (b) show
examples ofgenerating the availability of access permissions,
and (c) shows how the availability can bekilled.
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implicit_invalidate and implicit_writable calls
that would be redundant along all possible executions.

Unfortunately, we require interprocedural analysis to draw
full benefit from this framework, as most of the codes are
(justifiably) written in terms of subroutines. Our current
(intraprocedural) implementation removes only the redun-
dantmk_writable calls, and reduces parallel execution
time by only up to 3%.

5  Experimental Platform

Our experimental platform is a Blizzard implementation
running on a 16-node cluster of SparcStation20 worksta-
tions, connection by a Myricom Myrinet high speed net-
work. The Blizzard implementation in this study uses a
custom memory-bus device to accelerate fine-grain access
control [27]. Blizzard implementations that do not use this
device exist, but are somewhat slower.

The default coherence protocol (written completely in soft-
ware as unprivileged code [5]) is an eager-invalidate, multi-
ple-writer, release consistent protocol. It attempts to hide
write latency by not waiting for a write ownership grant
from a home node. At synchronization points, a node wait
for all its pending transactions to complete. We augmented
the protocol to support the primitives from Section 4.2.

Since our workstation nodes are dual-processor, we can
either dedicate a processor to protocol processing or inter-
leave protocol processing with computation on a single pro-
cessor (ignoring the second processor altogether—as
computation is always performed only on one processor).
The second processor should be viewed as an accelerator for
protocol processing—alternative high-end designs include a
dedicated protocol processor on the memory controller [19]
or the network interface [26]. We report results for both
configurations to evaluate the benefit of our optimizations
for two reasonable system design points. Table2 summa-
rizes relevant details of our system.

6  Results

We studied eight HPF application codes1, listed in Table3
along with their problem sizes and distribution of primary
arrays. The first six applications are regular programs col-
lected from various sources. The communication inpde,
shallow, grav, cg, and jacobi consists exclusively of shifts
and reductions.Lu is a triangular solver that broadcasts a
pivotal column—a different one in each iteration—to all
processors. In this application, each processor accesses
almost the entire input data set. It, therefore, spends signifi-
cant time mapping remote pages on its first run. To isolate
this effect, we report data collected on the last 5 of 6 runs of
the application (the first run took 30% more time than later
runs).

The final two applications, written locally by the authors,
are irregular programs.Lcp solves the linear complementar-
ity problem on a sparse matrix. It has array subscripts that
are themselves distributed array references. Communication
in lcp arises from two sources: it accesses a distributed array
of non-zero elements through an array subscript,
A(IA(I)), leading to elemental communication; and, it
performs all-to-all exchange of the solution vector, leading
to broadcast communication.Moldyn is ann-body code that
performs molecular dynamics calculations. Its irregularity
arises from indirect references to a distributed array repre-
senting molecule forces. In addition,moldyn requires a gen-
eralized reduction, which cannot be directly expressed as a

1. We have put the applications used in this work at the web site
http://www.cs.wisc.edu/~wwt/hpf/apps.html.

Table 2: Wisconsin COW (Cluster of Workstations).

Processor 66 MHz HyperSPARC (2)

Network Interface Myricom’s Myrinet

Minimum roundtrip latency
for short (4 bytes) message

40 µs

Network bandwidth 20 MB/s

Read miss processing time
for 128 byte block (2 cpu)

93 µs

Table 3: Application Suite

Application Problem Size & Distributions

pde grid size 128, 40 iters (RELAX routine only)
(*,*,BLOCK)

shallow 1025x513 grid, 100 iters
(*,BLOCK)

grav
grid size 128, 5 iters
(*,*,BLOCK) and(*,BLOCK)

lu 1024x1024 matrix (5 runs)
(*,CYCLIC)

cg 180x360 matrix, converges in 630 iters
(*,BLOCK)

jacobi 2048x2048 matrix, 100 iters
(*,BLOCK)

lcp 8192 variables, 0.5% sparsity
(BLOCK)

moldyn 8788 molecules, 30 iters (graph built twice)
(BLOCK)



parallel operation in HPF, and therefore, is implemented
externally.

The problem sizes of the applications used in our experi-
ments ran for 50-400 seconds on a single processor node.

For each application, we present speedups on our 16-node
cluster, both for single-cpu and dual-cpu configuration of
the Tempest implementation. We also present the speedups
obtained by PGI’s message-passing compiler (ported to use
Tempest messages, which were faster than IP). Although the
nodes contained two processors,pghpf (version 2.0) did not
benefit from the second processor, as it does not attempt to
overlap computation with communication. All speedups are
calculated relative to a uniprocessor run on a similar work-
station, albeit with more (96 M) physical memory, so no
applications pages. The uniprocessor codes do not incur any
parallelism overhead, but they were not blocked for optimal
cache performance.

Message passing worked well for all regular applications in
our suite. However, pghpf (2.0) generated inner loop com-
munication in the irregular applications that made parallel
execution impractical. The situation might improve if the
compiler employed the alternative of broadcasting complete
data sets. However, we do not expect that this strategy will
produce good speedups either (data in [7] corroborates this
intuition). Both lcp andmoldyn would benefit from inspec-
tor-executor technique.

Figure4 shows the overall speedup improvements for the
eight applications. Overall improvements are quite encour-
aging. All optimized versions, exceptgrav, had efficiency of

50% or more on 16 nodes. Even in the irregular application
lcp, our optimizations improved the phase that exhibited
only regular references.

As expected, the single-cpu shared-memory versions run
slower than the dual-cpu versions. We reiterate that the
dual-cpu versions used the second cpu only for protocol
processing purposes. Computation still ran on only one pro-
cessor in all versions.

The most notable result from this experiment is that, except
for lu, optimized shared memory performed almost as well
as message passing on regular programs and provided
respectable speedup on irregular programs. Surprisingly, cg
failed to produce good speedup on message passing—we
have not yet been able to isolate the cause of this anomaly.

Figure5 shows the effectiveness of our optimizations at
reducing cache misses and reducing communication time
for the dual-cpu case.The single-cpu case showed qualita-
tively similar behavior, so we do not report those numbers
here. Cache misses included read misses, write misses, and
access faults caused by stores to read-only blocks. The com-
munication time included the time during which the compu-
tation was suspended waiting for remote data or waiting at a
barrier. We lumped synchronization time with miss time,
because miss processing time shows up partly as increased
wait at barriers, which would be misleading to include as
synchronization time. Time spent in executing reductions
(which are implemented using low-level messages) is also
counted as communication time. The communication time
in the optimized versions includes the time spent in run-

Figure 4: Speedups for single-cpu, dual-cpu shared memory, with and without the coherence optimizations. Speedups obtained
with PGI’s message-passing backend are also reported (expectlcp andmoldyn, which could not be parallelized well).
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time calls to the protocol, in addition to previously men-
tioned overheads.

All regular applications, except grav, show a significant
decrease in the number of misses, which demonstrates that
our approach effectively puts most of the communication
under compiler control. The remaining misses are due to
both first access (cold misses) and the edge cases in each
array section.Grav shows a shortcoming of our approach. A
significant fraction (62%) of its misses are not removed
because the arrays ingrav are rather small (129x129 reals
and 129x129x129 reals), and thus the edge effects are pro-
nounced at 128-bytes cache block size. The cost of addi-
tional synchronization outweighs the benefits from the
coherence optimizations. Moreover, grav executes a large
number of SUM reductions, which, although efficiently
implemented, ultimately limits speedups for both shared
memory and message passing.

Lu performs LU-decomposition, which broadcasts a pivotal
column to all processors in each iteration. Since the loop is
triangular, the size of this column decreases over the itera-
tions. In the final columns, the edge effects limit the efficacy
of our optimizations. Although the overall miss counts
decreases by 85%, and communication costs by about 50%,
shared memory is still not as fast as message-passing for
this application. The message-passingpghpf (2.0) compiler
eliminated an inner copy loop, which we could not remove
from the shared memory version. The program receives the
pivotal column into a private arraycol:

    FORALL (j=i+1:N) col(j) = a(j,i)

This loop executes on all nodes under shared memory
(although the communication is optimized). However, PGI’s

compiler directly deposits the incoming data into thecol

array and eliminates this loop.

Pde, shallow, cg andjacobi are regular programs, with rela-
tively large columns shared between processors in a pro-
ducer-consumer relationship. Our techniques are ideally
suited for these cases, and we get good speedups. We were
able to eliminate a large fraction of the misses and signifi-
cantly decrease communication costs.

7  Conclusion

This paper describes a new method for optimizing commu-
nication in regular HPF programs running on a fine-grain
distributed shared memory system. Our approach uses static
program analysis in a compiler to identify cache blocks that
are candidates for protocol optimizations. A contract
between a compiler and the system’s coherence protocol
provides the means by which the compiler manages com-
munication for these blocks. By transferring contiguous
blocks in bulk and eliminating run-time coherence over-
head, compiler management yields substantial performance
improvements on a suite of HPF application codes. The
most important consequence of this improvement is that it
makes shared memory competitive with message passing on
regular applications, while not affecting (or in some cases,
even improving) its existing advantage in irregular codes.

Our techniques can be directly applied to other systems that
implement fine-grain shared memory in software, such as
Flash [19] and Shasta [30]. However, this work also shows
that fully customizable coherence protocol are not neces-

Figure 5: Bar charts showing reduction in misses and reduction in communication times. The normalized misses show the
unoptimized miss count divided by the optimized miss count. The normalized communication times show the unoptimized
communication time divided by the optimized communication time. The numbers on top of the unoptimized communication time
bars show the percentage of communication time in the total program execution time in the unoptimized case.
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sary to optimize regular communication. Our compiler only
requires a limited set of primitives that bypass the general
coherence protocol. We believe that most emerging com-
mercial parallel systems will provide fine-grain shared
memory and optional ways to bypass global coherence. This
work motivates these bypasses by showing that a compiler
can exploit them to significantly improve the performance
of shared-memory applications.

In future, we plan to compare the effectiveness of semantics
preserving primitives, such as prefetch and poststore,
against semantics altering primitives, such as the ones used
in this study. We also plan to extend our technique to handle
more general data distributions.
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