Compiler-directed Shared-Memory Communication for Iterative
Parallel Applications*

Guhan Viswanathan James R. Larus
Computer Sciences Department
University of Wisconsin—-Madison
1210 West Dayton Street
Madison, WI 53706 USA
Telephone: (608) 262-9519
{gviswana,larus}@cs.wisc.edu

August 6, 1996

Abstract

Many scientific applications are iterative and specify repetitive communication patterns.
This paper shows how a parallel-language compiler and a predictive cache-coherence protocol
in a distributed shared memory system together can implement shared-memory communication
efficiently for applications with unpredictable but repetitive communication patterns. The com-
piler uses static analysis to identify program points where potentially repetitive communication
occurs. At runtime, the protocol builds a communication schedule in one iteration and uses the
schedule to pre-send data in subsequent iterations. This paper contains measurements of three
iterative applications (including adaptive programs with unstructured data accesses) that show
that a predictive protocol increases the number of shared-data requests satisfied locally, thus
reducing the remote data access latency and total execution time.

1 Introduction

Many scientific applications are iterative with each iteration simulating the evolution of a physical
system along one dimension of the problem domain (typically time). Each iteration of a problem is
usually divided into multiple phases of parallel execution separated by synchronization. Communi-
cation within a parallel phase may include both structured communication (e.g., nearest-neighbor

*This work is supported in part by Wright Laboratory Avionics Directorate, Air Force Material Command, USAF,
under grant #F33615-94-1-1525 and ARPA order no. B550, NSF NYI Award CCR-9357779, NSF Grant MIP-
9225097, DOE Grant DE-FG02-93ER25176, and donations from Digital Equipment Corporation, Sun Microsystems,
and The Portland Group. Our Thinking Machines CM-5 was purchased through NSF Institutional Infrastructure
Grant No. CDA-9024618 with matching funding from the University of Wisconsin Graduate School. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Wright
Laboratory Avionics Directorate or the U.S. Government.

'To Appear in Supercomputing 1996. Copyright 1996 IEEE. Permission to reproduce for personal use or company
use is granted provided that the source and the IEEE copyright are indicated, and that the copies are not used in
any way that implies IEEE endorsement of a product or service, and that the copies themselves are not offered for
sale.

communication in Jacobi iteration) and unstructured communication (e.g., using indirection arrays
or pointer dereferences). Many of these applications have communication patterns that show little
or no change between iterations. As a result, even for irregular programs, for which static analysis
is imprecise, a run-time system can detect communication patterns in one iteration and use them
to predict communication in the subsequent iterations.

There are many examples of programs with repeated patterns of communication. In static
mesh calculations, nearest-neighbor communication is repeated in each iteration. In some irregular
problems, such as molecular dynamics codes [16], communication changes infrequently, perhaps once
every 20-30 iterations. In adaptive problems, communication changes frequently, but incremental
changes between iterations are small. For example, structured adaptive meshes gradually add mesh
nodes for greater accuracy in each iteration [9], and gravitational N-body problems represent bodies
in a quad-tree, which undergoes small structural changes between iterations.

This paper shows that a compiler for a data-parallel language can cooperate with a predictive
cache-coherence protocol in a distributed shared-memory (DSM) system to implement shared-
memory communication efficiently for applications with dynamic, but repetitive communication
patterns. The compiler uses static analysis to place protocol directives at points in a program
at which potentially repetitive communication takes place. A two-part predictive protocol in the
runtime system extends the standard memory coherence protocol. The first part of the protocol
identifies communication patterns at runtime and builds a communication schedule. The second
part uses a schedule to pre-send data that anticipates data requests in subsequent iterations. As
a result, the protocol can reduce the number of remote data requests, total remote memory ac-
cess latency, and program execution time. The predictive protocol optimizes communication for
repetitive producer-consumer or migratory patterns; it does not target other sharing patterns (e.g.,
reductions, for which high-level language support is available in data-parallel languages).

This paper describes this combination of two techniques — a predictive cache coherence proto-
col, and simple compiler analysis — for optimizing shared-memory communication. The predictive
protocol relies on and exploits customizable cache-coherence protocols in a cache-coherent DSM
system. User-level control over protocols is available in a number of systems, including Blizzard
[15] and FLASH [10]. The predictive protocol builds dynamic incremental communication sched-
ules — new requests not satisfied by the pre-send phase are added to the schedule for subsequent
iterations. This approach has the advantage that it can be applied to adaptive applications with
repetitive dynamic communication patterns that a compiler cannot analyze.

The second technique, simple compiler analysis, automatically applies a predictive protocol for
applications with repetitive producer-consumer sharing patterns for which a sequentially-consistent
memory coherence protocol would incur large overheads [2]. By contrast, compilers targeting
message-passing machines must identify and fully analyze run-time communication patterns in
applications. Our simple analysis only identifies program points at which potentially repetitive
communication takes place, but need not identify the patterns themselves.

We implemented this new approach in a compiler for the data-parallel language C** [11], which
uses Blizzard [15], to implement a shared address space. Blizzard implements the Tempest parallel
programming interface [14] on the CM-5, providing fine-grain distributed shared memory, and allows
user-level shared-memory coherence protocols to customize communications to fit an application’s
needs. The C** compiler inserts run-time directives to invoke a single predictive protocol in the
run-time system to optimize repetitive communication for data-parallel applications.

We analyze the performance of cooperative communication optimization by comparing the
performance of optimized and non-optimized versions of three applications on a 32-processor CM-
5. They include Adaptive, an adaptive structured mesh relaxation, Barnes, a gravitational N-body

code and Water, a molecular dynamics code. In all cases, the predictive protocol reduced total
remote access latency. In two cases, the optimized version is faster than the best non-optimized
version (1.5x for Adaptive and 1.07x for Water). For Barnes, which shows excellent spatial locality,
the optimized and non-optimized versions are comparable.

This paper proceeds as follows. Section 2 compares the approaches in this paper to previous
work. Section 3 describes C**’s predictive protocol for communication optimization, building on
an outline of Blizzard’s default Stache coherence protocol. Section 4 describes compiler analysis for
C** programs to identify repetitive communication patterns and place runtime system directives.
Section 5 shows how these optimizations can be applied to improve the performance of three
different applications. Section 6 concludes the paper.

2 Related Work

Related work for repetitive communication support falls into four broad categories: libraries, com-
pilers, memory coherence protocols, and hardware.

A number of run-time libraries provide communication support for specific classes of appli-
cations, and require explicit programmer actions to structure the application using abstractions
provided by the library. LPARX [8] and its adaptive-mesh extension [9] provide a software infras-
tructure to support structured static and adaptive mesh methods on message-passing machines.
By contrast, our approach implements automatic communication optimization for programs writ-
ten in a data-parallel language running on customizable cache-coherent DSMs (which also run on
message-passing machines).

The most closely related work is the compiler-based Inspector-Executor approach that targets
irregular communication patterns using the CHAOS [4] communication library. For each parallel
loop that specifies irregular communication (e.g., using indirection arrays), the compiler generates
an inspector and an executor. The inspector identifies non-local accesses at runtime and builds
a communication schedule, which the executor uses to transfer data before executing the loop.
A number of optimizations attempt to reduce the cost of the inspector phase, which is typically
expensive, and must be executed whenever the indirection array changes. Ponnusamy et al. [12]
note that if indirection arrays do not change between iterations, the communication schedule need
not be rebuilt. Agrawal et al. [1] describe two optimizations that apply to distinct parallel loops
whose schedules overlap: coalescing, which merges the two schedules, or incremental schedules,
which subtracts the common part from the second schedule. Qur work differs from the Inspector-
Executor approach in three significant ways. First, CHAOS targets message-passing multiprocessors
while C** targets customizable cache-coherent DSMs, which again can run on message-passing
machines. Second, our approach requires no separate inspector and executor code, because the
default protocol handles the problem of obtaining a copy of remote data which is absent when the
loop is executed. Third, our approach includes incremental communication schedules, which are
necessary for adaptive applications. Although the CHAOS group has looked at means to build
incremental schedules, we are unaware of published descriptions of their approach or results.

Many DSM systems provide mechanisms to control a memory system to provide better support
for parallel applications. Falsafi et al. [5] show that application-specific protocols can significantly
improve application performance, especially for repetitive producer-consumer sharing patterns for
which write-invalidate policies are inefficient. Their implementation included hand-written custom
protocols for each application. By contrast, C** uses a single protocol that is automatically invoked
by compiler directives.

Ramachandran et al. [13] propose additional hardware coherence primitives (e.g, update and

prefetch) to help the programmer optimize common sharing patterns. Their SEL_WRITE primitive
provides functionality very similar to our predictive protocol. Our approach adds compiler analysis
for automatic predictive protocol usage.

3 A Predictive Protocol for Repetitive Communication Schedules

The C** gystem relies on Blizzard, a cache-coherent DSM sytem, to implement a global address
space for data-parallel programs. Blizzard’s default Stache coherence protocol provides sequentially
consistent, transparent shared memory using a write-invalidate protocol [14]. Shared memory pro-
vides a high level of abstraction, which makes compiler development easier, but the write-invalidate
policy incurs large overheads for producer-consumer sharing patterns (which occur repeatedly in
many iterative applications).

The C** predictive protocol optimizes shared-memory communication for repetitive producer-
consumer and migratory sharing patterns in data-parallel programs. It augments Stache to build
communication schedules in one iteration and to pre-send data using a schedule in subsequent it-
erations. If the application’s communication pattern is repetitive, the predictive protocol reduces
the number of high-latency, non-local shared data accesses. The predictive protocol builds incre-
mental communication schedules — new requests not anticipated previously are identified through
access faults and are added to the schedule for subsequent iterations. The predictive protocol was
developed using Teapot, a domain-specific language that reduces the complexity of specifying and
developing cache-coherence protocols [3].

This section describes two parts of C**’s predictive protocol, the first part that build a com-
munication schedule, and the second part that pre-sends data. Before describing the predictive
protocol, we outline Stache’s mechanisms and policies, and briefly describe why a write-invalidate
protocol is inefficient for producer-consumer sharing patterns.

3.1 The Stache Shared-Memory Protocol

Stache implements sequentially-consistent shared memory using a directory-based write-invalidate
protocol[14]. Stache is built on Tempest, which is a parallel programming substrate that supports
fine-grain access control, i.e., at the cache block granularity (32-128 bytes). Each cache block may
be in one of three states: Invalid, ReadOnly, or Read Write. Inappropriate accesses to a block
(e.g., a read access to an Invalid block) generate faults that are vectored to a user-level handler
in the Stache protocol.

Each shared-memory cache block in the system is mapped to its home node, where it resides
initially. The home node also maintains a block’s directory information, which lists multiple readers
or a single writer, and is used to maintain consistency.

A read access to an invalid block invokes a user-level Stache fault handler, which sends a message
to the home node requesting a copy of the block. The home node updates its directory information
and sends a read-only block back to the requesting processor. On a write access to an invalid
or read-only block, the home processor invalidates all outstanding read-only copies (to maintain
sequential consistency) and sends a writable block to the requestor.

3.2 Inefficiencies in a Write-invalidate Protocol

It is widely known that write-invalidate protocols are inefficient for iterative producer-consumer
communication patterns (see, for example, [2]). Each data transfer between producer and consumer
involves four messages if a data item’s home location is different from the producer and consumer:

1. The consumer requests a readable copy from the home node
2. The home node invalidates the producer’s copy

3. The producer returns its copy to the home node

4. The home node sends the consumer a readable copy

The producer follows a similar protocol to acquire a writable copy when it generates new values.

When producer-consumer sharing patterns can be identified in an application, a write-update
protocol can transfer a data item with one or two messages [5]. However, update protocols do not
ensure sequential consistency and cannot be used in general.

3.3 Building Communication Schedules in the Predictive Protocol

C**’s predictive protocol augments Stache to collect communication information within a parallel
phase. The protocol identifies, for each cache block requiring communication due to faulting ac-
cesses, whether the block was read or written (and the processors that read or wrote the block).
The protocol relies on the compiler to demarcate parallel phases in the program (Section 4).

Since all requests to a block are routed through the home node, the predictive protocol augments
Stache handlers at the home node. At run time, when the home node receives a read (or write)
request from a remote node for a cache block, the augmented handler updates the communication
schedule to mark the block as read (or written) in that phase. If a block is read and written within
the same phase, it is marked as a “conflict” block. This can occur if there is false sharing (i.e.,
when two processors access distinct parts of the block), or if parallel tasks conflict.

The predictive protocol builds schedules incrementally, starting from an empty schedule. During
the first iteration, the protocol identifies faulting cache block accesses and extends the schedule.
In subsequent iterations, changes in the communication pattern may cause faulting accesses to
additional blocks, which are identified and added to the original schedule. This allows the protocol
to track evolving sharing patterns characteristic of adaptive applications.

The predictive protocol works well for incremental additions to a schedule, but does not track
deletions. When a processor no longer accesses a block, the protocol transfers the block unnecessar-
ily. For applications whose pattern changes include a significant number of deletions, the schedule
must be rebuilt often by flushing the old schedule and building a new one.

3.4 Using Communication Schedules to Presend Data

At the beginning of a subsequent iteration of the parallel phase, compiler directives invoke the
pre-send phase of the predictive protocol on all processors to transfer data according to the com-
munication schedule. The goal of the pre-send phase is to anticipate block requests and execute
anticipated actions early.

Each processor executes one of two actions for blocks in the communication schedule for which
it is the home node. For a block marked “read”, the processor sends invalidations to any current
writer, and forwards readable copies to all processors marked as readers. For a block marked
“write”, the processor invalidates current readers or writers, and forwards a writable copy to the
marked writer. Currently, there is no action for blocks marked “conflict”, since they occur very
rarely in programs with independent parallel threads of execution. One possible action for such
blocks is to anticipate the first stable block state (read or write) before the conflict occurred.

class Grid(float) [1[1) { /* Member functions */ }s

Figure 1: Aggregate definition syntax in C**

Pre-sent copies are cached at remote nodes with appropriate access control tags (ReadOnly
or ReadWrite). Accesses to cached copies are handled transparently by Tempest, usually at full
hardware speeds, without invoking the protocol or other software intervention.

After all blocks in the schedule have been transferred, the protocol enforces a global barrier
synchronization to ensure that all protocol cache blocks states are stable and match those expected
by the default protocol. For efficiency, the predictive protocol coalesces neighboring blocks and
transfers them using bulk messages to amortize message startup costs.

4 Compiler Analysis to Identify Potentially Repetitive Patterns

The predictive protocol relies on directives from the C** compiler to identify points in the program
where potentially repetitive communication patterns exist. In C** as in other data-parallel lan-
guages, data-parallel operations clearly divide a program’s execution into sequential and parallel
phases. The C** compiler uses data-flow analysis to identify repetitive parallel phases that require
communication, and augments these phases with directives to invoking the predictive protocol.

Our simple compiler analysis is optimistic and conservative and does not attempt to identify
actual patterns of communication in the program (e.g., nearest-neighbor communication), or even
that the pattern is really repetitive in the sense that data items requested in a previous iteration
will be requested again in a following iteration. While such analysis is routine for programs with
mostly static communication patterns, it is infeasible for programs with dynamic communication
patterns such as adaptive applications. Our analysis can wrongly identify a non-repetitive pattern
as a repetitive one, leading to slower (but still correct) execution of the program with the predictive
protocol.

This section describes our data-flow analysis, which proceeds in two phases. First, parallel
functions are analyzed to broadly classify their access patterns. Second, the sequential part of
the program (which includes calls to parallel functions) is analyzed to identify where annotations
for parallel phases must be placed. Before describing compiler analysis, we briefly introduce the
data-parallel features of C**,

4.1 Parallel functions in C**

C**is a large-grain data-parallel language based on C++ [11]. It includes all the desirable features
of the data-parallel programming model [7], such as a global namespace and nearly deterministic
execution. It provides coarse-grain data-parallelism, much like HPF’s DO INDEPENDENT loops [6],
but enforces independent execution of coarse-grain tasks. A detailed description of C** can be
found elsewhere [11].

Data-parallel programs express parallelism by invoking a data-parallel operation on a data
collection. In C** | data collections are called Aggregates and look like arrays of classes. For
example, Figure 1 declares a two-dimensional collection of floating point values. The size of an
Aggregate may be specified at runtime when an Aggregate object is created.

Data-parallel operations in C** are user-defined functions denoted by the parallel keyword. A
parallel function operates on a specific Aggregate argument, which is also denoted by the parallel

void stencil(parallel Grid &new A, Grid A) parallel

{
}

new A[#0] [#1] = (A[#0 - 1]1[#1]1 + A[#0][#1 - 11 + A[#0 + 1]1[#1] + A[#01[#1 + 11) / 4.0;

Figure 2: Stencil in C**

void update(parallel Mesh &primal, Mesh &dual) parallel

{
/* Loop over all in-edges */
for (int i = 0; i < primal[#0].in_degree; i ++)
primal[#0] .value -= dual[primal[#0].edges[i]].value * primal[#0].coeff[i];
}

Figure 3: Unstructured mesh update in C**

keyword. For example, Figure 2 describes a 4-point stencil operation in C**. The pseudo variables
#0 and #1 identify row and column positions within the Aggregate and allow access to neighboring
elements.

Data and Computation Distribution The C** compiler relies on Stache to distribute all
shared data at the granularity of a page. The C** system includes a number of simple computation
distribution schemes, including block distributions on 1-dimensional Aggregates and row-block and
tiled distributions on 2-dimensional Aggregates, but not other general distributions or user-specified
data distributions.

4.2 Parallel Function Analysis - Identifying Access Patterns

Calling a parallel function on an Aggregate creates multiple function invocations, one for each
element of the Aggregate. Each parallel function invocation “owns” the element of the Aggregate
on which it operates. In addition to its “own” element, each invocation may also access neighboring
Aggregate elements or elements from other global Aggregates. For example, the parallel function
update in Figure 3 implements a simple unstructured mesh update on a bipartite mesh (partitioned
into primal and dual). The edge descriptors (and their corresponding transfer coefficients) are
stored with each mesh element (the data structure of a mesh element is not shown in the example).

The parallel function update in Figure 3 includes unstructured accesses to the dual mesh,
some of which require inter-processor communication. For each parallel function, the C** compiler
uses context-insensitive analysis to compile a list of all Aggregate member accesses that potentially
require communication. Each access is (conservatively) categorized as a Home access (for example,
access to the “own” element), or a Non-Home access (for all other accesses). For example, the
summary access list of function update in Figure 3 contains two elements, (primal, Write access,
Home), and (dual: Read access, Non-Home).

4.3 Compiler Analysis to Place Directives

The second step analyzes the sequential portion of the program which includes calls to parallel
functions. First, the compiler builds a flow graph of the sequential program, mapping parallel

tree_rebuild_init

@bodi%

(Tree, (write, home)) tree_rebuild_init

End phase 1

Start phase 2
(Tree, (read, non-home)

insert_bodies
(Body, (read, home))

End phase 2
Start phase 3

<z

(Tree, (write, home))

@f_mas_i ity (Tree, (write, home))

(Tree, (read, non-home))
(Body, (read, home))

(Tree, (write, home))

compute_forces compute_forces

@ (b)

Figure 4: Control flow graph for the main sequential loop in Barnes-Hut. CFG (a) is annotated
with parallel function access patterns. CFG (b) is annotated with runtime phase directives for the
predictive protocol.

function data access lists back to function call sites. As our compiler currently does not support
inter-procedural analysis, the sequential portion is restricted to the main function. For example,
Figure 4 displays the control flow graph (CFG) for the main loop in the sequential portion of
Barnes-Hut (Section 5.2) annotated with access lists.

We perform data-flow analysis on the sequential section of the program to determine, for each
Aggregate at each program point, whether cached copies of Aggregate elements may exist on remote
processors due to unstructured read or write accesses. If these copies cannot exist, a single copy
of each element is present on its home processor, created by an owner write access. Analogous to
reaching definitions, we define the reaching unstructured accesses property, which is true whenever
cached copies of an Aggregate element may exist on remote processors.

The compiler uses a forward-flow, any-path data-flow analysis to compute reaching unstructured
accesses for each Aggregate at each program point, using a framework identical to the reaching-
definition problem. There are three transfer functions for parallel function data accesses:

1. Owner write accesses kill reaching unstructured accesses, because the remote copies are in-
validated.

2. Unstructured write accesses kill reaching unstructured accesses, but generate potentially new
unstructured accesses.

3. Unstructured read accesses do not kill reaching unstructured accesses (because the protocol
allows multiple readers), and generate unstructured accesses.

The compiler computes reaching unstructured accesses using an iterative bit-vector based data-flow
computation on the sequential control flow graph.

Results of the reaching unstructured access data-flow computation direct the placement of run-
time protocol directives. A parallel function call requires a communication schedule and preceding
predictive protocol phase if, for any Aggregate

1. The call is reached by unstructed accesses and includes owner write accesses, or

2. The call includes unstructured accesses itself, whether the reaching property includes un-
structured accesses or not.

The placement algorithm also includes one optimization to coalesce multiple communication
schedules. The compiler uses an inside-out pass on the CFG to coalesce neighboring phases that
include only home accesses, and moves schedules out of loops that contain only home accesses (e.g.,
function center_of mass in IFigure 4). This optimization is analogous to communication schedule
coalescing in the inspector-executor model [1], and amortizes the overhead of the predictive protocol
over multiple parallel functions. In Figure 4, this optimization allowed a single directive for phase

3.

5 Measuring the Optimizations

In this section, we measure the effect of compiler-directed shared-memory communication on three
iterative data-parallel scientific applications (Adaptive, Barnes, and Water) which are described
briefly in Table 1. Adaptive and Barnes have dynamic repetitive communication patterns, and
Water demonstrates a static repetitive communication pattern. All three applications spend a non-
trivial fraction of execution time in remote access latency (Figures 5, 6, 7). We briefly outline the
algorithm for each application, and compare the performance of C** versions with and without
optimized communication. For Barnes, we also compare both versions against a hand-optimized
SPMD version (written by others) that uses an application specific protocol for efficiency [5]. For
Water, we compare both versions against the Splash-2 version [18] that is optimized for transparent
shared memory.

Each performance graph compares the execution time of two or more versions of each benchmark
application relative to the fastest version of that application. All execution times were measured
on a 32-processor Thinking Machines CM-5 with the Blizzard [15] shared memory layer. Each bar
in the graph is divided into three sections:

Remote data wait Time spent waiting for non-local memory accesses to complete
Predictive protocol Time spent in the pre-send phase of the predictive protocol

Compute+Synch Time spent in computation and synchronization. This portion of the execu-
tion time varies between different versions of the same program because of differences in
synchronization time.

We also experimented with different cache block sizes for each application. In general, the
predictive protocol worked best for small cache blocks (the smallest being 32-bytes), while the
unoptimized or hand-tuned SPMD codes were able to exploit larger cache blocks effectively. In

| Program | Brief Description | Data set

Adaptive Structured adaptive mesh 128x128 mesh, 100 iterations
Barnes Gravitational N-body simulation 16384 bodies, 3 iterations
Water Molecular dynamics 512 molecules, 20 iterations

Table 1: Benchmark applications

Unopt l:l Protocol l:l Data wait
60 r Compute+Synch
Unopt
50 L
(2}
E 40t
£
g 30|
g
20 7
o] /
0 /// 7
C**(32) C+*(256)
Figure 5: Execution time for 4 C** versions of Adaptive — C** versions with and without

optimized communication at 2 different cache block sizes. Numbers in parentheses indicate cache
block sizes.

addition to the 32-byte block comparison between unoptimized and optimized codes, we also present
execution times using programs with larger cache block sizes which minimized execution time for
unoptimized or hand-optimized codes.

5.1 Adaptive

Adaptive is a structured mesh calculation that computes electric potentials in a box. The pro-
gram imposes a mesh over the box and computes the potential at each point by averaging its
four neighbors. At points where the gradient is steep, finer detail is necessary and the program
subdivides the cell into four child cells. This process iterates until the mesh relaxes. Initially, the
mesh is represented by a two-dimensional array, and dynamically allocated quad trees capture cell
subdivision. Each iteration of the program consists of a red-black sweep over the mesh computing
averages. Within each sweep, each cell updates values in its quad tree, reading values from neigh-
boring points. The predictive protocol optimizes data movement from neighbor reads in the quad
tree.

Figure 5 shows that the predictive protocol successfully reduces shared-data wait time by pre-
sending data. The protocol also indirectly reduces synchronization time in Adaptive, resulting in
significantly lower total execution time. Synchronization time is reduced because load imbalance
in Adaptive implies that the shared-data wait time is distributed unevenly among processors, and
differences in wait time contribute to synchronization time on lightly loaded processors. At a larger
cache block size of 256 bytes (the best case for the unoptimized program), the predictive protocol
is less effective because it transfers larger amounts of data, some of which may be redundant. The
best optimized version of Adaptive is 1.56x faster than the best unoptimized version.

10

120

l:l Protocol l:l Data wait
100 F Compute+Synch
@ 80Ff
% Unopt Opt
£
s 60
2
g
& wl
20
0
C**(1K) Hand(1K)
Figure 6: Execution time for 5 versions of Barnes — C** versions with and without optimized

communication at 2 different cache block sizes, and hand-optimized SPMD. Numbers in parentheses
indicate cache block sizes.

5.2 Barnes

Barnes [17] simulates the movement of bodies in a gravitational system over time. The bodies are
modeled as point masses that exert gravitational forces on other bodies. The algorithm computes
forces between bodies which are used to update body positions in each time step. Rather than
computing all N? forces, Barnes approximates the force exerted by a distant collection of bodies
by that of a point mass at the center of mass of the collection.

Barnes uses an oct-tree to represent bodies in 3-dimensional space. Each node in the tree
represents a region in space, with a child representing one octant of its parent’s space. The tree
is unbalanced and deeper in regions of high body density. To calculate the force on a body, the
algorithm performs a depth-first traversal of the tree. If an interior node is sufficiently far away from
the body, the bodies in that region are approximated by a point mass at the tree node. Otherwise,
the algorithm “opens” up the interior node and traverses its subtrees. If the force computation
encounters a body at the leaf of the tree, it computes interactions with that body.

The Barnes algorithm in C** includes unstructured accesses to tree nodes during two phases, the
force computation phase, and the tree-build phase, with the center-of-mass calculation in between.
The compiler inserts directives for 4 parallel phases in the program where transitions between
non-home and home accesses occur (Figure 4).

Figure 6 shows that communication optimization reduces shared-memory wait time significantly
for 32-byte cache blocks. However, Barnes shows good spatial locality and the unoptimized version
benefits significantly from 1024-byte blocks making it marginally faster than the optimized version.
Both 1024-byte versions are slightly faster than a hand-optimized SPMD version of Barnes [5] that
uses a write-update protocol for efficient shared-memory communication on the CM-5.

5.3 Water

Water [17] evaluates forces and potentials in a system of water molecules over a number of time
steps. The potential of the system includes inter-molecular potentials arising from interactions
between molecules. The program computes interactions between all pairs of molecules that lie
within a spherical cutoff range equal to half the length of the box enclosing all molecules. In the
data-parallel implementation of Water, each molecule potentially computes interactions with half

11

l:l Protocol l:l Data wait
30 Compute+Synch
@
¥
g 20 t
5
5
8
i
10
0 .

Splash(64)

Figure 7: Execution time for 3 versions of Water — C** with and without optimized communi-
cation, and shared-memory Splash. Numbers in parentheses indicate cache block sizes.

the remaining molecules following it in the ordered data set.

Compiler-directed communication optimizations target the interaction computation phase which
uses a static repetitive producer-consumer sharing pattern — a molecule’s position updated in one
iteration is read by 7 other molecules in the following iteration.

Communication optimization reduces shared-memory wait time for Water (Figure 7), but results
in small execution time improvements overall (1.05x). The optimized version is 1.2x faster than the
Splash version [18], which is optimized for transparent shared memory, and does not utilize custom
protocols or message-passing primitives for communication. The cache block sizes were chosen to
show the best case for each version.

5.4 Discussion

The predictive protocol decreases remote memory access latency at the cost of an extra pre-send
phase and the cost of building communication schedules in augmented protocol handlers. This
technique is beneficial on multiprocessor machines with significant remote memory access latency,
such as Blizzard on the CM-5 (200 microseconds average remote access latency), or networks of
workstations without hardware support for shared memory. The tradeoff is likely to be different
for shared-memory multiprocessors or hardware-assisted DSMs, which have smaller remote access
latencies.

The predictive protocol also coalesces neighboring cache blocks in the pre-send phase to amor-
tize message startup costs over large messages. The benefits of this optimization should extend
uniformly to all classes of distributed-memory multiprocessor machines, possibly with better results
than on the CM-5 network which is optimized for small messages.

6 Conclusion

Many scientific applications simulate physical systems using iterative parallel computations. Typ-
ically, these applications involve communication patterns that are also repetitive. This paper
demonstrates that cooperation between a data-parallel language compiler and a predictive protocol
in a cache-coherent DSM can automatically improve shared-memory communication for repetitive
producer-consumer or migratory communication patterns. The compiler uses simple static analysis
to identify points in the program where potentially repetitive communication patterns exist. The

12

predictive protocol augments the default shared-memory protocol to use communication schedules
generated in one iteration to pre-send data in subsequent iterations.

The combination of compiler-analysis and memory system support gives this approach two
advantages. First, dynamic run-time support from the memory system allows our approach to
optimize adaptive problems whose reference patterns cannot be analyzed by a compiler and which
incur large overheads in compiler-implemented shared-memory approaches. Second, communication
pattern analysis in the compiler enables automatic custom protocol usage. This approach inherits
some of the advantages of application-specific protocols, but is far simpler for a programmer.

Experiments with three applications show that pre-sending data with this approach effectively
reduces the amount of time spent waiting for shared data when compared to the request-response
model of a write-invalidate coherence protocol. In two cases, the optimized program was 1.05x and
1.50x faster than the unoptimized version. In the third case, the unoptimized program was able to
exploit a larger cache block size to run slightly faster than the optimized program.

Acknowledgements We are indebted to Chuck Koelbel and the other anonymous referees for
many comments that helped improve the presentation significantly.

References

[1] Gagan Agrawal and Joel Saltz. Interprocedural Compilation of Irregular Applications for Distributed
Memory Machines. In Proceedings of Supercomputing 95, San Jose, CA, November 1995.

[2] Satish Chandra, James R. Larus, and Anne Rogers. Where is Time Spent in Message-Passing and
Shared-Memory Programs? In Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS VI), pages 61-75, October 1994.

[3] Satish Chandra, Brad Richards, and James R. Larus. Teapot: Language Support for Writing Memory
Coherence Protocols. In Proceedings of the SIGPLAN ’96 Conference on Programming Language Design
and Implementation (PLDI), May 1996.

[4] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communication Optimizations for Irregular
Scientific Computations on Distributed Memory Architectures. Journal of Parallel and Distributed
Computing, 22(3):462-479, September 1994.

[5] Babak Falsafi, Alvin Lebeck, Steven Reinhardt, loannis Schoinas, Mark D. Hill, James Larus, Anne Rogers,
and David Wood. Application-Specific Protocols for User-Level Shared Memory. In Proceedings of
Supercomputing ’94, pages 380-389, November 1994.

[6] High Performance Fortran Forum. High Performance Fortran Language Specification. Version 1.0, May
1993.

[7] W. Daniel Hillis and Guy L. Steele, Jr. Data Parallel Algorithms. Communications of the ACM, 29(12):1170-
1183, December 1986.

[8] Scott R. Kohn and Scott B. Baden. Irregular coarse-grain data parallelism under LPARX. Journal of
Scientific Programming. To appear.

[9] Scott R. Kohn and Scott B. Baden. A Parallel Software Infrastructure for Structured Adaptive Mesh
Methods. In Proceedings of Supercomputing 95, San Jose, CA, November 1995.

[10] Jeffrey Kuskin et al. The Stanford FLASH Multiprocessor. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 302-313, April 1994.

[11] James R. Larus, Brad Richards, and Guhan Viswanathan. Parallel Programming in C**: A Large-Grain
Data-Parallel Programming Language. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming
Using C++. MIT Press, 1996.

[12] Ravi Ponnusamy, Joel Saltz, and Alok Choudhary. Runtime-Compilation Techniques for Data Partition-
ing and Communication Schedule Reuse. In Proceedings of Supercomputing '93, pages 361-370, Portland,
Oregon, November 1993.

13

[13]

[14]

[15]

[16]

(17]

[18]

Umakishore Ramachandran, Gautam Shah, Anand Sivasubramaniam, Aman Singla, and Ivan Yanasak. Archi-
tectural Mechanisms for Explicit Communication in Shared-Memory Multiprocessors. In Proceed-
ings of Supercomputing '95, San Jose, CA, November 1995.

Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-Level Shared
Memory. In Proceedings of the 21st Annual International Symposium on Computer Architecture, pages 325—
337, April 1994.

loannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R. Larus, and David A. Wood.
Fine-grain Access Control for Distributed Shared Memory. In Proceedings of the Sixth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS VI), pages
297-307, October 1994.

Shamik D. Sharma, Ravi Ponnusamy, Bongki Moon, Yuan-Shin Hwang, Raja Das, and Joel Saltz. Run-time
and Compile-time Support for Adaptive Irregular Problems. In Proceedings of Supercomputing 94,
pages 97-106, November 1994.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel Applications
for Shared Memory. Computer Architecture News, 20(1):5-44, March 1992.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. In Proceedings of the 22nd Interna-
tional Symposium on Computer Architecture, pages 24-36, Santa Margherita Ligure, Italy, June 1995.

14

