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Abstract

In this paper wedevelopa specificatiormethodolgy that documentsndspecifiesa cache coheenceproto-
col in eighttables:the states events,actions,andtransitionsof the cache and memorycontmollers. e then
usethis methodolgy to specifya detailed,low-level three-statebroadcastsnoopingprotocol with an unor-
dered datanetworkand an ordered addressnetworkthat allows arbitrary skew. e also presenta detailed,
low-level specificatiorof a new protocolcalled MulticastSnooping5], and,in doingso,webetterillustrate
the utility of thetable-basedpecificatiormethodolgy. Lastly, we demonstate a techniquefor verification
of the Multicast Snoopingprotocol, throughthe sketch of a manualproof that the specificationsatisfiesa

sequentially consistent memory model.

Index Terms:cachecoherenceprotocolspecification protocolverification,memoryconsisteng, multicast

snooping

1 Introduction

A cachecoherencerotocolis aschemdor coordinatingaccesso sharelocksof memory Processorand
memoriesexchangemessaget sharedataandto determinewhich processorsiave read-onlyor read-write
accesso datablocksthatarein their cachesA processos accesso acacheblockis determinedy the state
of thatblock in its cache,andthis stateis generallyone of the five MOESI (Modified, Owned,Exclusie,
Shared]nvalid) state426]. ProcessorssuerequestssuchasGetExclusive or GetSharedto gain accesso
blocks. They canalsoloseaccesgo blocks, eitherby choice(e.g.,a cachereplacementpr whenanother
processos requeststealsa block avay. Marny invalidate protocolsmaintainthe invariant that there can

either be one writer and no readers or no writer agchember of readers.

What is protocol specification?Cachecoherencerotocolsfor sharednmemorymultiprocessorsreimple-
mentedvia the actionsof numeroussystemcomponent@ndthe interactionsbetweernthem. Thesecompo-

nentsinclude cachecontrollers,directory controllers,and networks, amongothers.The specificationof a



cachecoherencerotocolmustdetailthe actionsof eachof thesecomponent$or every combinationof state
it couldbein andeventthat could happenFor example,it mustspecifythe actionsperformedby a cache
controllerthathasExclusive accesgo a cacheblock whena Get Sharedequestor thatblock arrivesfrom

another node, and it must specify thevrstate that the cache controller enters.

What is protocol verification? Verificationof a cachecoherencerotocolinvolvesproving thata protocol
specificatiorobeys adesiredmemoryconsisteng model,suchassequentiatonsisteng (SC)[17]. To verify
that a protocol satisfiesa coherenceprotocol requiresproving that it obeys certaininvariantsaboutwhat
valuealoadfrom memorycanreturn.For example to satisfySC,theloadsandstoresrom thedifferentpro-
cessorgnustappearto the programmerto be in sometotal orderwhere(a) the value of a load equalsthe
valueof the mostrecentstoreto the sameaddressn thetotal order and(b) thetotal orderrespectshe pro-

gram order at each of the processors.

Why is verification difficult? At a high level, protocolscanberepresentedsin Figurel, whichillustrates
the specificationof a cachecontroller for a three state(Modified, Shared,Invalid) protocol. Thereare a

handful of states, with atomic transitions between them.
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FIGURE 1. High-level specification br cache contoller

Since,at a high level, cachecoherencerotocolsare simply finite statemachinesjt would appearat first

glancethatit would be easyto specifyandverify acommonthreestate(MSI) broadcassnoopingprotocol.
Unfortunately at the level of detail requiredfor an actualimplementationgven seeminglystraightforvard

protocolshave numeroudransientstatesandpossibleraceconditionsthat complicatethe tasksof specifica-
tion andverification.For example,a singlecachecontrollerin a“simple” MSI protocolthatwe will specify
in Section2.1has11 stateq8 of which aretransient),13 possibleavents,and21 actionsthatit mayperform.
The othersystemcomponentsresimilarly complicatedandthe interactionsof all of thesecomponentsre

difficult to specify and erify.

Why is verification important? Rigorousverificationis important,sincethe compleity of a low-level,
implementablerotocolmalkesit difficult to designwithout ary errors.Many protocolerrorscanbe uncov-

eredby simulation.Simulationwith randomtestinghasbeenshavn to be effective at finding certainclasses



of bugs,suchaslost protocolmessageandsomedeadlockconditions[27]. However, simulationtendsnot
to be effective at uncovering subtlebugs, especiallythoserelatedto the consisteng model. Subtleconsis-
teng/ bugsoftenoccuronly underunusuakombinationf circumstancesandit is unlikely thatun-directed
(or random)simulationwill drive the protocolto thesesituations.Thus,systemati@andperhapsnoreformal

verification techniques are needed xp@se these subtleis.

Verification requires a detailed, low-level specification. Systematicverification of an implementable
cachecoherencerotocolrequiresalow-level, detailedspecificatiorof the entireprotocol.While thereexist
numerousverificationtechniquesall of thesetechniquesseekto shav thatanimplementablespecification
meetscertaininvariants.Verifying an abstracspecificationonly shavs thatthe abstraciprotocolis correct.
For example theverificationof a high-level specificationwhich omitstransientstateamay shav thatinvari-
antsholdfor this abstractiorof the protocol,but it will notshawv thatanimplementableversionof this proto-

col obgss these imariants.

Curr ent specificationsare not sufficient. Specificationghathave beenpublishedin theliteraturehave not
beensufficiently detailedfor implementatiorpurposesandthey arethusnot suitablefor verificationpur-
posesln academiaprotocolspecificationgendto be high-level, because completelow-level specification
may notbe necessaryor thegoal of publishingresearch4,7,13]. Moreover, acompletdow-level specifica-
tion without a conciseformatdoesnot lenditself to publicationin academialn industry low-level, detailed
specificationsrenecessargndexist, but, to the bestof our knowledge,nonehave beenpublishedn thelit-

erature Thesespecification®ftenmatchthe hardwaretoo closely which complicatesverificationandlimits

alternatve implementationdut eliminatesthe problemof verifying that the implementationsatisfiesthe

specification.

A newtable-basedspecificationtechniquethat is sufficient for verification. To addresshe needfor con-
ciselow-level specificationsye have developeda table-basedpecificatiormethodology For eachsystem
componenthatparticipatesn the coherencerotocol,thereis atablethatspecifieshe componens beha-
ior with respecto a given cacheblock. As anillustrative example, Table1 shows a specificatiorfor a sim-

plified atomic cache controller

The rows of the table correspondo the stateshat the componentanenter the columnscorrespondo the
eventsthatcanoccur andthe entriesthemselesarethe actionstaken andresultingstatethatoccurfor that
combinationof stateand event. The actionsare codedwith letterswhich are definedbelow the table.For
example theentrya/Sdenoteshata Loadeventatthe cachecontrollerfor ablockin statel causeshecache

controller to perform a Get Shared and enter state S.

This simpleexample,however, doesnot shav the power of our specificatiormethodologybecauset does
not include the mary transientstatespossessetly realistic coherenceprotocols.For simple atomic proto-
cols, the traditional specificationapproachof drawving up statetransitiondiagramsis tractable.However,

non-atomictransactionscausean explosion in the state space,since events can occur betweenwhen a



TABLE 1. Simplified Atomic Cache Contrwoller Transitions
Event
Load Store Other GETS | Other GETX
| als c/M
[}
< S h c/M I
n
M h h dm/S dll
a: perform Get-Shared d: send data to requestor h: cache hit
c: perform Get-Excluse m: send data to memory

requestis issuedandwhenit completesand numeroustransientstatesare usedto capturethis behaior.
Section? illustratesthe methodologywith a more realistic broadcassnoopingprotocol and a multicast

snhooping protocol [5].

A methodologyfor proving that table-basedspecificationsare correct. Using our table-basedpecifica-
tion methodologywe presenia methodologyfor proving thata specifications sequentiallyconsistentand
we shov how this methodologycan be usedto prove that our multicastprotocol satisfiesSC. Our method
usesanextensionof Lamports logical clocks[16] to timestampthe load andstoreoperationgperformedby
the protocol. Timestampsleterminehow operationsshouldbe reorderedo witnessSC, asintendedby the
designerof the protocol. Thus,associatedvith arny executionof the augmentecprotocolis a sequencef
timestampeaperationghatwitnessesequentiatonsisteng of thatexecution.Logical clocksandtheasso-
ciatedtimestampingactionsare,in effect, a conceptuahugmentatiorf the protocolandarespecifiedusing
the sametable-basedransitiontablesasthe protocolitself. We note that the setof all possibleoperation
tracesof the protocolequalghatof theaugmentegbrotocol,andthatthelogical clocksarepurelyconceptual
devicesintroducedfor verificationpurposesandare never implementedn hardware.We considerthe pro-
cessof specifyinglogical clocksandtheir actionsto beintuitive for the designeiof the protocol,andindeed

the process is aaluable debgging tool in its wn right.

A straightforvardinvariantof theaugmentegbrotocolguaranteethatthe protocolis sequentiallyconsistent.
Namely for all executionsof theaugmentegbrotocol,the associatedimestampedequencef LDs andSTs
is consistenwith the programorderof operationsatall processorsindthe valueof eachLD equalsthat of

themostrecentST. To prove this invariant,numerousther“support” invariantsareaddedasneededlt can
be shavn thatall executionsof the protocolsatisfyall invariantsby inductionon thelengthof the execution.

This irvolves a tedious case-by-case analysis of each possible transition of the protocol andhganh in

To summarizethe strengthof our methodologyarethatthe proces®f augmentinghe protocolwith times-
tampingis usefulin designingcorrectprotocols,and an easily-statednvariant of the augmentegrotocol

guaranteesequentiatonsisteng. However, our methodologyalsoinvolvestediouscase-by-casproofsthat
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transitionsrespecinvariants.To our knowledge,no automatedapproachs known that avoids this type of
caseanalysis Becausehe problemof verifying SCis undecidableautomatecpproachebave beenproved
to work only for alimited classof protocols(suchasthosein which afinite stateobserer canreorderoper-
ationsin orderto find a withessto sequentiaconsisteng [14]) that doesnot includethe protocolsof this

paper We will discuss othererifications techniques and compare them to ours in Settion

What have we contributed? This papermakes four contritutions. First, we develop a new table-based
specificationmethodologythat allows us to conciselydescribeprotocols.Second,we provide a detailed,
low-level specificationof a three-statdoroadcassnoopingprotocolwith anunordereddatanetwork andan
addressetwork which allows arbitraryskew. Third, we presenta detailed Jow-level specificationof multi-
castsnooping[5], and,in doingso,we betterillustratethe utility of thetable-basedpecificatiormethodol-
ogy. The specificatiorof this morecomplicatedorotocolis thoroughenoughto warrantverification.Fourth,
we demonstratatechniqueor verificationof the MulticastSnoopingprotocol,throughthe sketchof aman-

ual proof that the specification satisfies a sequentially consistent memory model.

2 Specifying Broadcast and Multicast Snooping Protocols

In this section,we demonstrateour protocol specificationmethodologyby developing two protocols:a
broadcassnoopingprotocolanda multicastsnoopingprotocol.Both protocolsare MSI (Modified, Shared,

Invalid) and use eight tables to document and specify:
* the states,wents, actions, and transitions of the cache controller
* the states,wents, actions, and transitions of the memory controller

The controllersare statemachineghat communicatevia queuesandeventscorrespondo messagebeing
processedrom incomingqueuesThe actionstakenwhena controllerservicesanincomingqueue includ-

ing enqueuing messages on outgoing queues, are considered atomic.

2.1 Specifying a Broadcast Snooping Protocol

In this section, we shall specify the beloa of an MSI broadcast snooping protocol.

2.1.1 System Model and Assumptions
The broadcastsnoopingsystemis a collectionof processonodesand memorynodes(possiblycollocated)

connected by tavlogical networks (possibly sharing the sameypital netvork), as shan in Figure2.

A processonodecontainsa CPU, cache anda cachecontrollerwhich includeslogic for implementingthe
coherencerotocol.lt alsocontaingqueuesdetweerthe CPUandthecachecontroller TheMandatoryqueue
containsLoads(LDs) and Stores(STs)requestedy the CPU, andthey areorderedby programorder LD
andST entrieshave addressesandSTshave data.The OptionalqueuecontainsRead-OnlyandRead-Write
Prefetchesequestedby the CPU,andtheseentrieshave addressesl he Load/StoreDataqueuecontainsthe
LD/ST from the Mandatoryqueueandits associatedlata(in the caseof a LD). A diagramof a processor

node is also shen in Figure2.
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FIGURE 2. Broadcast Snooping System

The memoryspaceis partitionedamongone or more memorynodes.lt is responsiblefor respondingto
coherenceequestsvith dataif it is the currentowner (i.e., no processonodehasthe block Modified). It

also recaies writebacks from processors and stores this data to memory

The two logical networks are a totally orderedbroadcasnetwork for addressmessageandan unordered
unicastnetwork for datamessageslhe addressietwork supportshreetypesof coherenceequestsGETS
(Get-Shared)GETX (Get-Exclusie) andPUTX (Dirty-Writeback).Protocoltransactionsareaddressnes-
sageghat containa datablock addresscoherenceequestype (GETX, GETS,PUTX), andthe ID of the

requesting processdbata messages contain the data and the data block address.

All of thecomponentsn the systemmake transitionsbasedon their currentstateandcurrentevent (e.g.,an
incomingrequest)andwe will specifythe statesgvents,andtransitionsfor eachcomponenin the restof
this section.Therearemary componentshatmake transitionson mary blocksof memory andthesetransi-
tions canhappenconcurrently We assumehowever, thatthe systemappeardo behae asif all transitions

occur atomically

2.1.2 Netvork Specification

The network consistsof two logical networks. The addresshetwork is a totally orderedbroadcashetwork.
Total orderingdoesnot, hawvever, imply thatall messagearedeliveredat the sametime. For example,in an
asynchronousmplementationthe pathto one node may take longerthanthe pathto anothernode.The
addressetwork carriescoherenceequestsA transitionof the addressetwork is modeledas atomically
transferringanaddressnessagérom the outputqueueof a nodeto theinput queueof all of thenodesthus

inserting the message into the total order of address messages.



The datanetwork is an unorderedboint-to-pointnetwork for delivering responseto coherenceequestsA
transitionof the datanetwork is modeledasatomicallytransferringa datamessagéom the outputqueueof

a node to the input queue of the destination node.

All nodesare connectedo the networks via queuesandall we assumeboutthesequeuess that address
gueuedrom the network to the nodesaresened in FIFO order Dataqueuesandaddressjueuesrom the
nodesto the network can be sened without this restriction. For example, this allows a processomodes
GETX to pass its PUTX for the victim block.

2.1.3 CPU Specification
A transitionof the CPU occurswhenit placesa LD or ST in the Mandatoryqueue placesa Prefetchin the

Optional queue, or remmes data from the LD/ST data queue. It can perform these transitionstahen

2.1.4 Cache Contoller Specification

In eachtransition,a cachecontrollermayinspectthe headsof its incomingqueuesinject nev messagemto
its queuesand make appropriatestatechangesAll we assumeaboutservingincoming queuess thatno
gueuels stanedandthatthe Address Mandatory andOptionalqueuesaresenedin strict FIFO order The
actionstaken whena queueis sened are considerecatomicin thatthey areall donebeforeanotherqueue
(including the samequeue)is sened. Before ary of the actionsare taken, however, the cachecontroller
checksto ensurghatresourcessuchasspacdan anoutgoingqueueor anallocatedTBE, areavailablefor all
of theactions.If the sumof theresourcesequiredfor all of the actionsis not available,thenthe cachecon-
troller abortsthetransition performsnoneof theactions andwaitsfor resourceso becomeavailable(where
we definea cacheblockto beavailablefor aLD/ST if eitherthereferencedlock alreadyexistsin thecache
or thereexistsanemptyslot which canaccommodatéhereferencedlock whenit is recevedfrom external
sources)Theexceptionto thisrule is having anavailableblockin the cache andthis situationis handledby
treatinga LD, ST, or Prefetchfor which no cacheblock is available asa Replacemengventfor the victim
block.

If the requestat the headof the Mandatoryor Optionalqueuecannotbe serviced(becausehe block is not
presentwith the correctpermissionsor a transactiorfor the block is outstanding)thenno furtherrequests

from that queue can be serviced. Optional requests can be discarded witubumgatorrectness.

The cachecontrollerkeepsa countof all outstandingcoherencdransactiongssuedby that nodeand, for
eachsuchtransactionpneTransactiorBuffer Entry (TBE) is resered.No transactionganbeissuedf there
is no spacen the outgoingaddressjueueor if thereis alreadyan outstandingransactiorfor thatblock. A

TBE containghe addres®f theblock requestedthe currentstateof thetransactionandary datareceied?!

1. Thedatafield in the TBE maynotberequired An implementatiormaybeableto usethecaches dataarrayto buffer
the datafor the block. This modificationreduceghe sizeof a TBE andavoids specificactionsfor transferringdatafrom
the TBE to the cache data array



TABLE 2. Broadcast Snooping Cache Controller States

TBE Cache
State State Description
I invalid
Stable S shared
states M modified
ISP busy invalid, issued GETS, ke not seen GETS or data yet
ISA busy invalid, issued GETS, lva not seen GETS, ha seen data
ISP busy invalid, issued GETS, ha seen GETS, ha not seen data ye
IMAP busy invalid, issued GETX, he not seen GETX or data yet
Transientd IM# busy invalid, issued GETX, he not seen GETX, ha seen data
states IMP busy invalid, issued GETX, hae seen GETX, ha not seen data yqt
MIA I modified, issued PUTX, ka not seen PUTX yet
1A [ modified, issued PUTX, ra not seen PUTX, thenwsather
GETS or GETX (reachable from K

The possibleblock statesanddescriptionf thesestatesarelistedin Table2. Note thattherearetwo types
of “states”for a cacheblock: the“stable” stateandthe “transient” state. The stable state is oneof M (Modi-

fied), S (Shared)or | (Invalid), it is recordedn the cache andit indicatesthe stateof the block beforethe
latest outstandingtransactionfor that block (if ary) started.The transient state, as shavn in Table2, is
recordedin a TBE, andit indicatesthe currentstateof an outstandingransactiorfor that block (if ary).

Whenfuture tablesreferto the stateof a block, it is understoodhat this stateis obtainedby returningthe
transientstatefrom a TBE (if thereis anoutstandingransactiorfor this block), or else(if thereis no out-
standingtransactionpy accessinghe cacheto obtainthe stablestate.Blocks not presentin the cacheare
assumedo have the stablestateof |. Eachtransientstatehasanassociated¢achestate,asshavn in Table2,

assuminghatthetag matchesn the cache A cachestateof busyimpliesthatthereis a TBE entryfor this

block, and its state is a transient state other th&hadviliA.

To representhetransienistatessymbolically we have developedanencodingof thesetransientstateswvhich
consistof asequencef two or morestablestateqinitial, intended andzeroor morependingstates)where
the secondstatehasa superscripwhich denoteswvhich part(s)of the transaction addresgA) and/ordata
(D) - arestill outstandingFor example,a processowhich hasblock B in statel, sendsa GETSinto the
Address-Oufjueue andseeshe dataresponséut hasnot yet seenthe GETS,would have B in statelS".

When the GETS awes, the state becomes S.

Eventsatthe cachecontrollerdependnincomingmessagesihe eventsarelistedanddescribedn Table3.
Notethat,in the caseof Replacementdlock B refersto the addres®f thevictim block. Theallowedcache
controlleractionsarelisted in Table4. Cachecontrollerbehaior is detailedin Table5, whereeachentry

containsa list of <actions / next state> tuples.Whenthe currentstateof a block correspondso the row of
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TABLE 3. Broadcast Snooping Cache Contiller Events

Event Description Block B
Load LD at head of Mandatory queue address of LD at head of Manda-
tory Queue
Read-Only Read-Only Prefetch at head of Optional | address of Read-Only Prefetch a|
Prefetch queue head of Optional Queue
Store ST at head of Mandatory queue address of ST at head of Manda-
tory Queue
Read-Write Read-Write Prefetch at head of Optional|] address of Read-Write Prefetch 4t
Prefetch gueue head of Optional Queue
Mandatory LD/ST at head of Mandatory queue for | address of victim block for LD/ST]
Replacement which no cache block isailable at head of Mandatory queue
Optional Read-Write Prefetch at head of Optional] address of victim block for
Replacement gueuefor which no cacheblockis available | Prefetch at head of Optional quege
Own GETS Occurs when we obsenour eavn GETS address of transaction at head of
request in the global order incoming address queue
Own GETX Occurs when we obsexour eavn GETX same as alve
request in the global order
Own PUTX Occurs when we obsexwour avn PUTX same as ahe
request in the global order
Other GETS Occurs when we obsena GETS request same as ahve
from another processor
Other GETX Occurs when we obsena GETX request same as ahe
from another processor
Other PUTX Occurs when we obsena PUTX request same as alve
from another processor
Data Data for this block from the data nedyk address of data message at heaq ¢

incoming data queue

theentryandthe next eventcorrespondso the columnof the entry, thenthe specifiedactionsareperformed
andthe stateof the blockis changedo the specifiedhew state If only a next stateis listed,thenno actionis

required. All shaded cases are impossible.

2.1.5 Memory Node Specification

Oneof the advantagesf broadcassnoopingprotocolsis thatthe memorynodescanbe quite simple. The
memorynodesin this systemJik e thosein the Synapsd9], maintainsomestateabouteachblock for which
this memorynodeis thehome,in orderto make decisionsaboutwhento senddatato requestorsThis state
includesthe stateof the block andthe currentownerof the block. Memorystatesarelistedin Table6, events

are in Bble7, actions are inable8, and transitions are irable9.

2.2 Specifying a Multicast Snooping Ratocol
In this section,we will specifyan MSI multicastsnoopingprotocol with the samemethodologyusedto

describethe broadcassnoopingprotocol. Multicast snoopingrequireslesssnoopbandwidthand provides



TABLE 4. Broadcast Snooping Cache Controller Actions

b if the

Il data

Action Description

a Allocate TBE with Address=B

c Set cache tag equal to tag of block B.

d Deallocate TBE.

f Issue GETS: insert message in outgoing Address queue ypiexGETS, Address=B, Sender=N.

g Issue GETX:insert message in outgoing Address queue wWitk=GETX, Address=B, Sender=N

h ServicelLD/ST (a cachehit) from thecacheand(if aLD) enqueughedataontheLD/ST dataqueue.

i Pop incoming address queue.

| Pop incoming data queue.

k Pop mandatory queue.

I Pop optional queue.

m Send data from TBE to memory

n Send data from cache to memory

p Issue PUTX: insert message in outgoing Address queue witvPUTX, Address=B, Sender=N

q Copy data from cache to TBE.

r Send data from the cache to the requestor

s Save data in data field of TBE.

u Service LD from TBE, pop mandatory queue, and enqueue the data on the LD/ST data queu
LD at the head of the Mandatory queue is for this block.

v Service LD/ST from TBE, pop mandatory queue, and (if a LD) enqueue the data on the LD/S
queue if the LD/ST at the head of the Mandatory queue is for this block.

w Write data from data field of TBE into cache

y Send data from the TBE to the requestor

z Cannot be handled right wo

higher throughputof addresgransactionsthus enablinglarger systemsthan are possiblewith broadcast

snooping.

2.2.1 System Model and Assumptions

Multicast snooping,as describedby Bilir et al. [5], incorporatedeaturesof both broadcassnoopingand

directoryprotocols .t differsfrom broadcassnoopingn thatcoherenceequestsiseatotally orderedmulti-

castaddressetwork insteadof a broadcashetwork. Multicastmasksare predictedoy processorsandthey

mustalwaysincludethe processoitself andthe directoryfor this block (but not ary otherdirectories) yet
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TABLE 5. Broadcast Snooping Cache Controller Transitions

> e 2% 8|2 x = 2 X ¢
5 S5 5¢g © = = o 05
$ 18 98 5 5 5k skl 8 =2 o & 2%
s |2 T & 3T g BE| ¢ c = o g ©| O
n 8a 83 ogl 2 s = < £ £
o x 2y | O O O o 5 ©
I caf/l caf/lS cag/l cag/l i i i
gAD  AD  \AD  \AD
S hk | ag/IM ag/IM | I i i/l i
AD  AD
M hk I hk [ agp/M aqp/M| mi/S il i
A A
ISAD | Z z z z z z |insP i i i sins®
IMAD | z z z z z z i/IMP [ [ i sjnimA
ISA z z z z z z uwdi/S [ [ [
MA ] Z z z z z z vwdi/ i i i
M
MIA | Z z z z z z mdi/t* ymimA yimA i
T z z z z z z din* i i i
ISP z z z z z z [ z i Jsuwdj/
S
mMP 1 z z z z z z z z i [svwdj/
M

t. Only change the cache state to | if the tag matches.

they areallowedto beincorrect. A GETSmaskis incorrectif it omitsthe currentowner, anda GETX mask
is incorrectif it omitsthe currentowneror ary of the currentsharersThis scenarids resohed by a simple
directorywhich candetectmaskmispredictionsandretry theserequestgwith animproved mask)on behalf

of the requestors.

Themulticastsnoopingprotocoldescribederediffersfrom thatspecifiedn Bilir etal. in acoupleof signif-
icantways.First, we specifyanMSI protocolhereinsteadof anMOSI protocol.Secondwe specifythe pro-
tocol here at a lower, more detailedlevel. Third, the directory in this protocol can retry requestswith

incorrect masks on behalf of the original requester

A multicastsystemis shavn in Figure3. The processomodesare structuredlike thosein the broadcast
snoopingprotocol.Insteadof memorynodes though,the multicastsnoopingprotocolhasdirectorynodes,
which arememorynodeswith extra protocollogic for handlingretries,andthey arealsoshovn in Figure3.
In the next two subsectionsye will specifythe behaiors of processoanddirectorycomponentsn anMSI

multicast snooping protocol.

11



TABLE 6. Broadcast Snooping Memory Controller States

State | Description
S Shared or Ivalid
M Modified
Ms? | Modified, hae not seen GETS/PUTX, iaseen data
MSP | Modified, hae seen GETS or PUTX, tnot seen datg
TABLE 7. Broadcast Snooping Memory Controller Events
Event Description Block B
Other Home A requesarrivesfor ablockwhose | address of transaction at head of]
home is not at this memory incoming address queue
GETS A GETS at head of incoming same as ahe
address queue
GETX A GETX at head of incoming same as ahe

PUTX (requestor is
owner)

PUTX (requestor is
not owner)

Data

address queue

A PUTX from ovner at head of
incoming address queue

A PUTX from non-evner at head
of incoming address queue

Data at head of incoming data
queue

same as abe
same as ahe

address of message at head of
incoming data queue

TABLE 8. Broadcast Snooping Memory Controller Actions

Action | Description
c Set avner equal to directory
d Send data message to requestor
j Pop address queue.
k Pop data queue.
m Set avner equal to requestor
w Write data to memory
z Delay transactions to this block.
TABLE 9. Broadcast Snooping Memory Controller Transitions
£
2 58 _g§&
o P | r35 rz8 ©
State o G ol 2 Eg o g g A
S j dj dmj/M j j
M j cj/msP mij cj/msP j wk/MSA
MSA j ci/S mij ci/S j
msP j z z j j wk/S

12



Directory Node

Address network

l \

FIFO

Multicast -
Address Network Directory
Block
E B R BgEiR E state | Memory
info
Point to Point Data Network l ]

]

Data network

FIGURE 3. Multicast SnoopingSystem

2.2.2 Netvork Specification

The datanetwork behaesidentically to that of the broadcassnoopingprotocol, but the addressetwork
behaesslightly differently As the nameimplies, the addressetwork usesmulticastinginsteadof broad-
castingand,thus,atransitionof the addressietwork consistof takinga messagéom the outgoingaddress
gueueof anodeandplacingit in theincomingaddresgjueuef the nodesspecifiedin the multicastmask,
aswell asthe requestinghodeandthe memorynodethatis the homeof the block beingrequestedif these

nodes are not already part of the mask).

Addressmessagesontainthe coherenceequestype (GETS,GETX, or PUTX), requestinghodelD, multi-
castmask,block addressandaretry count. Datamessagesontainthe block addresssendingnodelD, des-
tination nodelD, datamessageype (DATA or NACK), datablock, andthe retry countof the requesthat

triggered this data message.

2.2.3 CPU Specification
The CPU behaes identically to the CPU in the broadcast snooping protocol.

2.2.4 Cache Contoller Specification
Cachecontrollersbehare muchlik e they did in the broadcastnoopingprotocol,exceptthatthey mustdeal
with retriedandnacledrequestandthey aremoreaggressie in processingncomingrequestsThis added

compleity leads to additional states, TBE fields, protocol actions, and protocol transitions.

Thereareadditionalstatesn the multicastprotocolspecifiedheredueto the moreaggressie processingf
incomingrequestsinsteadof buffering incoming requestgwith the 'z’ action)while in transientstatesa
cachecontrollerin this protocolingestssomeof theserequeststherebymoving into new transienistatesAn
exampleis the statelM P1, which occurswhena processoin statelMP ingestsanincomingGETX request

from anothemprocessoinsteadof buffering it. The notationsignifiesthata processostartedn I, is waiting
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for datato goto M, andwill thengoto | immediately(exceptfor in casesn which forward progresdssues
requiretheprocessoto performalLD or ST beforerelinquishingthedata,aswill bediscussedbelow). There
arealsothreeadditionalstatesthat are necessaryo describesituationswherea processoseesa nackto a

request that it has seen yet.

Therearefour additionalfields in the TBE: ForwardProgressrorwardID, RetryCountand ForwardIDRe-
tryCount.The ForwardProgressit is setwhena processoseedts own requesthatsatisfieghe headof the
Mandatoryqueue Thisflagis usedto determinevhena processomustperformasingleloador storeonthe
cachdine beforerelinquishingthe block 2 For example whendataarrivesin statelMPI, aprocessocanser-
vicealLD or STto this block beforeforwardingthe block if andonly if ForwardProgresss set. The Forwar-
dID field recordsthe nodeto which a processomustsendthe block in casessuchasthis. In this example,
ForwardID equalsthe ID of the nodewhoseGETX causedhe processoto go from IMP to IMPI. Retry-
Countrecordsthe retry numberof the mostrecentmessageand ForwardIDRetryCountecordsthe retry

count associated with the block that will be farded to the node specified bgrwvardID.

We usethe sametable-driven methodologyaswasusedto describethe broadcassnoopingprotocol. Tables

10, 11, 12, and 13 specify the stategngs, actions, and transitions, resp&tdji for processor nodes.

2.2.5 Directory Node Specification

Unlike broadcassnooping the multicastsnoopingprotocolrequiresa simplified directoryto handleincor-

rectmasks A directorynode,in additionto its incomingandoutgoingqueuesmaintainsstateinformation

for eachblock of memorythatit controls.The stateinformationincludesthe block state the ID of the cur-

rentowner (if the stateis M), anda bit vectorthatencodesa supersetf the sharerdif the stateis S). The

possibleblock statesfor a directoryarelistedin Table14. As before,we referto M, S andl asstablestates
andothersastransientstateslnitially, for all blocks,the stateis setto I, the owneris setto memoryandthe

bit-vectoris setto encodean empty setof sharersThe statenotationis the sameasfor processonodes,
althoughthe stateMX” refersto the situationin which adirectoryis in M andrecevesdata,but hasnotseen
the correspondingoherenceequestyet andthereforedoesnot know (or care)whetherit is PUTX dataor

data from a processor that isdd@rading from M to S in response to another procesS&IETS.

A directorynodeinspectsts incomingqueuedor theaddresanddatanetworksandremovesthemessagat
the headof a queue(if arny). Dependingon the incoming messagandthe currentblock state,a directory
may inject a new messagénto an outgoingqueueandmay changethe stateof the block. For simplicity, a

directory currently delays all requests for a block for which a PUTXwndmade is outstandir?g.

2. Another viable schemeowld be to set this bit when a processor oleseits avn address request and this request
corresponds to the address of the head of the Mandatory queue. It igal$o $et BrwardProgress when a LD/ST
gets to the head of the Mandatory queue while there is an outstanding transaction for whigh ned et seen the
addressequestHowever, sequentiatonsisteng is not preseredby a schemevhereForwardProgress setwhendata
returns for a request and the address of the request matches the address at the head of the Mandatory queue.
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TABLE 10. Multicast Snooping Cache Controller States

TBE Cache

State State | Description
I Invalid
S Shared
M Modified

busy | invalid, issued GETS, ka not seen GETS or data yet

IMAD busy | invalid, issued GETX, ha not seen GETX or data yet

SMAP busy | shared, issued GETX, ¥enot seen GETX or data yet

ISA busy | invalid, issued GETS, lva not seen GETS, @ seen data

IMA busy | invalid, issued GETX, ha not seen GETX, a seen data

smA busy | shared, issued GETX, f&not seen GETX, la seen data

ISA* busy | invalid, issued GETS, va not seen GETS, ha seen nack

IMAY busy | invalid, issued GETX, he not seen GETX, kva seen nack

SMA” busy | shared, issued GETX, feanot seen GETX, ka seen nack

MIA I modified, issued PUTX, lva not seen PUTX yet

1A I modified, issued PUTX, lra not seen PUTX, thenwather GETS or GETX
ISP busy | invalid, issued GETS, ka seen GETS, lia not seen data yet

ISP busy [ invalid, issued GETS, ka seen GETS, ke not seen data, thennsather GETX

IMP busy | invalid, issued GETX, hee seen GETX, he& not seen data yet

IMPs busy | invalid, issued GETX, hee seen GETX, he not seen data yet, themsather GETS

IMP] busy | invalid, issued GETX, ha seen GETX, ha not seen data yet, themsather GETX

IMPs]| busy | invalid, issuedGETX, have seenGETX, have not seendatayet, thensav otherGETS,
then s&v other GETX

smP busy | shared, issued GETX, Y®seen GETX, he not seen data yet

sMPs busy | shared, issued GETX, ¥®aseen GETX, ha not seen data yet, themsather GETS

The directory events, actionsand transitionsare listed in Tables15, 16, and Table17, respectiely. The
action‘z’ (“delay transactiongo this block”) relieson the factthata directorycandelayaddressnessages
for a given block arbitrarily while waiting for a datamessageConceptually we have one directory per
block. Sincethereis morethanoneblock per directory animplementationwould have to be ableto delay
only thosetransactionsvhich arefor the specificblock. Note that consecutie GETS transactiondor the

same block could be coalesced.

3. Thisrestrictionmaintaingheinvariantthatthereis atmostonedatamessag@erblock thatthedirectorycanreceve,
thus eliminating the need fouffers and preserving the sanity of the protocoktiEpers.
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TABLE 11. Multicast Snooping Cache Contoller Events

Event Description Block B
Load LD at head of Mandatory queue address of LD at head of Mandatory Queye
Read-Only Read-Only Prefetch at head of Optional | address of Read-Only Prefetch at head of
Prefetch queue Optional Queue
Store ST at head of Mandatory queue address of ST at head of Mandatory Quele
Read-Write Read-Write Prefetch at head of Optional | address of Read-Write Prefetch at head g
Prefetch gueue Optional Queue
Mandatory LD/ST at head of Mandatory queue for | addres®f victim blockfor LD/ST atheadof
Replacement | which no cache block isvailable Mandatory queue
Optional Read-Write Prefetch at head of Optional | address of victim block for Prefetch at hegd
Replacement | queue for which no cache block i@#able | of Optional queue
Own GETS Occurs when we obserour avn GETS address of transaction at head of incoming
request in the global order address queue
Own GETX | Occurs when we obsexour avn GETX same as alve
request in the global order
Own GETS Occurs when we obsexour avn GETS same as ahe
(mismatch) request in the global ordewt the Retry-
Count of the GETS does not match Retry
Count of the TBE
Own GETX | Occurs when we obsexour avn GETX same as ahve
(mismatch) | requestin the global ordeat the Retry-
Count of the GETS does not match Retry}
Count of the TBE
Own PUTX Occurs when we obsexour avn PUTX same as alve
request in the global order
Other GETS | Occurs when we obsena GETS request same as alve
from another processor
Other GETX | Occurs when we obsena GETX request same as ahve
from another processor
Other PUTX | Occurs when we obsena PUTX request same as ahe
from another processor
Data Data for this block arvies addres®f messagatheadof incomingdata
queue
Data Data for this block arvies, lut the Retry- addres®f messagatheadof incomingdata
(mismatch) | Count of the data message does not matglyueue

RetryCount of the TBE

f

3 \erification of Snooping Piotocols

In this section,we presenta methodologyfor proving thata specificatiornis sequentiallyconsistentandwe

shav how this methodologycanbe usedto prove thatour multicastprotocolsatisfiesSC. Our methoduses

anextensionof Lamports logical clocks[16] to timestampthe load andstoreoperationgerformedby the

protocol. Timestampsdeterminehow operationsshould be reorderedto witnessSC, as intendedby the
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TABLE 12. Multicast Snooping Cache Controller Actions

Action | Description

a Allocate TBE with Address=B,dfrwardID=null, RetryCount=zero,dfwardIDRetryCount=zero, d+-
wardProgress bit=unset.

b Set rwardProgress bit if request at head of address queue satisfies request at head of Mandatqry
c Set cache tag equal to tag of block B.

d Deallocate TBE.

e Record ID of requestor indfwardID and record retry number of transactionanvardIiDRetryCount.

f IssueGETS:insertmessagén outgoingAddressqueuewith Type=GETS Address=B Sender=NRetry-

Count=zero.

g Issue GETX: insert message in outgoing Address queue Wit=GETX, Address=B, Sender=N,
RetryCount=zero.

h Service load/store (a cache hit) from the cache and (if a LD) enqueue the data on the LD/ST datg q

i Pop incoming address queue.

] Pop incoming data queue.

k Pop mandatory queue.

I Pop optional queue.

m Send data from TBE to memory
n Send data from cache to memory

Send data anddfwardIDRetryCount from the TBE to the processor indicateddswérdID.

(0]
p Issue PUTX: insert message in outgoing Address queue wig=PUTX, Address=B, Sender=N.
q Copy data from cache to TBE.

r Send data from the cache to the requestor
s Save data in data field of TBE.
t Copy retry field from message at head of incoming Data queue to Retry field in TBEnsatdD =

null, and set BrwardIDRetryCount=zero.

u ServicelD from TBE, popmandatoryqueue andenqueughedataonthe LD/ST dataqueuef thelLD at
the head of the mandatory queue is for this block.

v Treat as either h or z (optional cache hit). If it is a cache hit, then pop the mandatory queue.
w Write data from the TBE into the cache.
X If (and only if) ForwardProgress bit is set, service LD from TBE, pop mandatory queue,and enquque

data on the LD/ST data queue.

y Send data from the TBE to the requestor

Cannotbe handledright now. Eitherwait or discardreques{candiscardif this requesis in the Optional
queue).

a Copy retryfield from messagatheadof incomingaddressjueueto Retryfield in TBE, setForwardID =
null, and set 6rwardIDRetryCount=zero.

y Service LD/ST from TBE, pop mandatory queue, and (if a LD) enqueue the data on the LD/ST dgta
queue if the LD/ST at the head of the mandatory queue is for this block, 8fd8d data to TBE).

A Optionally service LD/ST from TBE.

) If (andonly if) ForwardProgresbit is set,serviceLD/ST from TBE, popmandatoryqueue,andif aLD)
enqueue the data on the LD/ST data queue.
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TABLE 13. Multicast Snooping Cache Controller Transitions
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TABLE 14. Multicast Snooping Memory Controller States

State | Description

| Invalid - all processors arevalid

S Shared - at least one processor is Shared

M Modified - one processor is Modified and the rest aralibh

MXA

Modified, hare not seen GETS/PUTX, V& seen data

MSP | Modified, hae seen GETS, ka not seen data

MI® | Modified, hare seen PUTX, he not seen data

TABLE 15. Multicast Snooping Memory Controller Events

Event

Description

Block B

GETS

GETX

GETSRETRY

GETSNACK

GETX-RETRY

GETX-NACK

PUTX (requestor is
owner)

PUTX (requestor isnot
owner)

Data

GETS with successful mask at head of
incoming address queue

GETX with successful mask at head of
incoming address queue

GETS with unsuccessful mask at head
incoming queue. Room in outgoing
address queue for a retry

GETS with unsuccessful mask at head
incoming queue. No room in outgoing
address queue for a retry

GETX with unsuccessfuinaskat headof
incoming queue. Room in outgoing
address queue for a retry

GETX with unsuccessfuihaskat headof
incoming queue. No room in outgoing
address queue for a retry

PUTX from avner at head of incoming
address queue.

PUTX from non-avner at head of incom
ing address queue.

Data message at head of incoming dat
queue

same as ahe

pf same as abe

pf same as ave

same as ahe

same as abe

same as alve

same as ahe

T incoming data queue

address of transaction at heagl
of incoming address queue

address of message at head

f

=

designeof the protocol.Logical clocksandtheassociatedimestampingctionsarea conceptual augmenta-

tion of the protocolandare specifiedusingthe sametable-basedransitiontablesasthe protocolitself. We

note that the set of all possible operation traces of the protocol equals that of the augmented protocol.

The processf developinga timestampingschemes a valuabledeluggingtool in its own right. For exam-

ple, an early implementationof the multicastprotocoldid not include a ForwardProgressit in the TBE,

and,uponreceving the datafor a GETX requestvhenin statelMPI, alwayssatisfiedan OP at the headof

the mandatoryqueuebeforeforwardingthe data.Attemptsto timestampOP reveal the needfor a forward
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TABLE 16. Multicast Snooping Memory Controller Actions

Action | Description

c Clear set of sharers.

d Send data message to requestor with RetryCount equal to RetryCount of request.

j Pop address queue.

k Pop data queue.

m Set avner equal to requestor

n Send nack to requestor with RetryCount equal to RetryCount of request.

q Add owner to set of sharers.

r Retry by re-issuing the request. Before re-issuing, the directory vemptbe multicast
maskandincrementgheretryfield. If thetransactiorhasreachedhe maximumnumberof
retries, the multicast mask is set to the broadcast mask.

S Add requestor to set of sharers.

w Write data to memory

X Set avner equal to directory

z Delay transactions to this block.

TABLE 17. Multicast Snooping Memory Controller Transitions
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progressit, roughly to ensurethat OP canindeedbe timestampedo thatit appeardo occurjust afterthe

(“earlier”) time of the GETX, and that this GHobgical timestamp also respects program order

In brief, our methodology for pving sequential consistepnconsists of the folleing steps.

* Augmentthe systemwith logical clocksandwith associate@ctionsthatassigntimestampgo LD and

ST operations.The logical clocks are purely conceptualdevices introducedfor verification purposes

and are neer implemented in hardave
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* Associatea global historywith any executionof the augmentegbrotocol Roughly the historyincludes
the configuation at eachnodeof the system(states,TBEs, cachecontents]ogical clocks,andqueues),
the totally orderedsequencef transactiongleliveredby the network, andthe memoryoperationsser-

viced so &r, in program orderalong with their logical timestamps.

¢ Using invariants,definethe notion of a legal global history. The invariantsare quite intuitive when
expressedisinglogical timestampsilt follows immediatelyfrom the definition of alegal globalhistory

that the correspondingecution is sequentially consistent.

* Finally, provethattheinitial historyof the systemis legal, thateachtransitionof the protocolmapslegal
globalhistoriesto legal globalhistories,andthatthe entrieslabelled“impossible”in the protocolspeci-
ficationtablesareindeedimpossible It thenfollows by inductionthatthe protocolis sequentiallycon-

sistent.

Thefirst stepabove, thatof augmentinghe systemwith logical clocks,canbe donehandin handwith devel-
opmentof the protocol.Thus,it is, onits own, avaluabledehuggingtool. The secondstepis straightforvard.
It is alsostraightforvardto selecta coresetof invariantsin thethird stepthatarestrongenoughto guarantee
thatthe executioncorrespondindo ary legal global history is sequentiallyconsistentThe final stepof the
proof methodologyabove requiresa proof for every transitionof the protocolandevery invariant,andmay
necessitatéhe additionof furtherinvariantsto the definition of legal. This stepof the proof, while not diffi-

cult, is certainly tedious.

In therestof this sectionwe describahefirst threestepsof this processn moredetail,namelyhow the mul-
ticastprotocolis augmentedvith logical clocks,andwhatis a global history andalegal global history We

include examples of the caseswred in the final proof step in Appendix A.

3.1 Augmenting the System with Logical Clocks

In this section,we shalldescribehow we augmenthe systemspecifiedearlierwith logical clocksandwith
actionsthatincrementclocksandtimestampoperationsaanddata.Thesetimestampswill make future defini-
tions (of global statesand legal global states)simpler and more intuitive. Theseaugmentationsio not

change the behavior of the system as originally specified.

3.1.1 The Augmented System

The system is augmented with the faliog counters, all of which are initialized to zero:
* One counter (global pulse number) associated with the multicast addressknetw
* Two counters (global and local clocks) associated with each processor node of the system.
* One counter (pulse number) added to each data field and to@aetidiD field of each TBE.
* One counter (pulse number) field added to each data message.

* One counter (global clock) associated with each directory node of the system.

21



TABLE 18. Processor clock actions

Action Description

g Set global clock equal to pulse of transaction being handled, and set local clock tq z

h Increment local clock. The timestamp of the LD/ST is set equal to the associated plo
and local clock alues.

i Set TBE lrwardID pulse equal to transaction pulse.

k Optionally treat as h.

0 Set data message pulse equal to TBEMRIAID pulse.

t Set TBE data pulse equal to pulse of incoming data message.

u If first Op in Mandatory queue is a LD for this block, then increment local clock. Tlhe
timestamp of the LD/ST is set equal to the associated global and local aloek.v

% If first Opin Mandatoryqueueis aLD/ST for this block, thenincrementocal clock. The
timestamp of the LD/ST is set equal to the associated global and local aloek.v

X If ForwardProgress bit is set (i.e., head of Mandatory Queue is a LD or this block)j th
no clock update, set global timestamp of LD equal to pulse of incoming data mesgac
and set local clockatue equal to 1.
Set data message pulse equal to transaction pulse.

z Same as x, Ut allov a LD or ST for this block.

3.1.2 Behavior of the Augmented System
In theaugmenteaystem the clocksgetupdatedandtimestampgor pulses)areassignedo operationsand

data upon transitions of the protocol according to theviadig rules.

Network: Eachnew addresdransactiorthatis appendedo thetotal orderof addressransaction®y the net-
work causeghe global pulsenumberto incrementby 1. The new value of the pulsenumberis associated

with the nev transaction.

ProcessorTables18 and19 describehow the globalandlocal clocksareupdated The TBE counteris used
to recordthetimestampof arequesthatcannotbe satisfieduntil the dataarrives.Whenthe dataarrives,the

owner sends the data with the timestamp trest g&ied in the TBE.

Directory: Briefly, uponhandlingary transactionthe directoryupdatests clock to equalthe global pulseof

that transaction. The pulse attached tp data message is set to be thkig of the directorg clock.

3.2 Global Histories

The global history associateavith an executionof the protocolis a 3-tuple<TransSe¢gConfigOps>. Trans-
Segrecords information on the sequence of transactions requested to date: the type of transaction, requester
addressmask,retry-numberpulse(possiblyundefined)andstatus(successfulunsuccessfuhack,or unde-
termined).Config recordsthe configurationof the nodes:stateper block, cachecontents queuecontents,

TBEs, andlogical clock values.Opsrecordspropertiesof all operationsgeneratedy the CPUsto date:

operations along with address, timestamp (possibly undefireddi,\and rank in program order
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TABLE 19. Processor clock updates

Processor/Cache Request See Own See Other See Own
Retry Retry
Match | Mismatch DATA NACK
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Theglobalhistoryis definedinductively on the sequencef transitionsin the execution.In theinitial global
history, Trans-Secand Ops are empty In Config all processorsarein statel for all blocks, have empty
gueuesno TBEsandclocksinitialized to zero.For all blocks,thedirectoryis in statel, theownersis setto
the directory andthelist of sharerss empty All incomingqueuesareempty Upon eachtransition, Trans-

Seq, Ops, and Confaye updated in a manner consistent with according to the actions of that transition.
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3.3 Legal Global Configurations and Legal Global Histories
Thereareseveralrequirementgor a global history <TransSeConfigOps> to be legal. Briefly, theseareas
follows. Thefirst requirements sufficient to imply sequentiatonsisteng. Theremainingfour requirements
supply additional imariants that are useful iuitding up to the proof that the first requirement holds.
* Opsis legal with respect to program orddihat is, the follaving should hold:
3.3.1 Opsrespects program ordérhat is, for ap two operations @and G, if O4 has a smaller
timestamp than ©in Ops then Q must also appear before @ program order
3.3.2 Eery LD returns thealue of the most recent ST to the same address in timestamp order
* TransSeds legal. To describehetype of constraintghat TransSegnustsatisfy we introducethenotion
of A-statevectors.The A-statevectorcorrespondindo TransSedor a givenblock B records for each
processoN, whetherTransSegonfersShared’S), Modified (M), or no (I) accesgo block B to proces-
sor N. For example,in a systemwith threeprocessorsif TransSeqconsistsof a successfulGETSto
block B by processot, followed by anunsuccessfuGETX to block B by processo®, followed by a
successfulGETSto block B by processoB, thenthe correspondingh-statefor block B is (S,1,S).The
constrainton TransSeqequire,for example,thata GETX on block B shouldnot be successfulf its
maskdoesnot includeall processorshat, uponcompletionof the transactiorjust prior to the GETX,
may have Sharedor Modified accesgo B. Thatis, if TransSegonsistof TransSeqfollowedby GETX
on block B andA is the A-statefor block B correspondindo TransSey thenthe maskof the GETX
shouldcontainall processorsvhoseentriesin A arenot equalto I. The precisedefinition of a legal

transaction sequence is included in Appendix A.

* Opsis legal with respectto Trans-SeqIntuitively, for all operationsop in Ops if op is performedby
processoN atglobaltimestamp, thenthe A-statefor processoN atlogicaltimet shouldbeeitherS or
M and should be M ibpis a ST

* Configis legal with respecto TransSeqThis involvesseveral constraintssincetherearemary compo-
nentsto Config For example,if processolN is in statelSAP for block B, thena GETSfor block B,

requested by N, with timestamp greater than that of N (or undefined) should@irbasfeq
* Configis legal with respect t@®ps That is, for all blocks B and nodes N, the faliog should hold:

3.3.3 If N is a processor and its state for block B is one of S, K1, SM*P, or SM, then the
value of block B in N8 cache equals that of the most recent SJps relatve to Ns clock. By
“most recent ST relaté to Ns clock” we mean a ST whose timestamp is less then or equal to
N’s clock.

3.3.4 If N is a processor and block B is in one af NBEs, then itsalue equals that of the most
recent ST irOps relatve to p.0.0, where p is the pulse in the data field of the TBE.

3.3.5 If datafor block B is in N'sincomingdataqueuejts valueequalsthe mostrecentST in Ops
(relative to the data timestamp, not N’current time).

3.3.6 If N is the directory of block B, then for each block B for which N is wreeo its value
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equals that of the most recent STOps(relative to N's clock).
3.4 Properties of Legal Global Histories
It is not hardto shaw thatthe global history of the systemis initially legal. The maintaskof the proofis to

shaw the following:
Theorem 1: Each protocol transition tak the system from agal global history to a fgal global history

To illustratehow Theoreml is proved, we includein AppendixA the proof of why the transitionat each
entry of Table13 (cachecontrollertransitions)mapsa legal global history, <TransSeq,Ops,Config*p a

new global history <TransSeq’,0Ops’,Config’in which TransSeqis legal.

TABLE 20. Classification of Related Vrk

Manual Semi-automated Automated

lazy caching[2]

DASH memory model [12]
Complete || amport Clocks [25, 21, 6, 15],
method Lamport Clocks (this paper),
term rawriting [24]

Lazy & snhoopy
caching[14]

RMO testing[19],

Origin2000 coherence[8],
Incomplete S3.mp coherence[22],
method FLASH coherence [20],

Alpha 21264/21364 [3],
HP Runvay testing[11, 18]

4 Related Work

We focuson papershat specifyandprove a completeprotocolcorrect,ratherthanon efforts thatfocuson
describingmary alternatve protocolsandconsisteng models,suchas[1, 10]. Thereis alarge body of liter-
atureon the subjectof formal protocol verificatiorft which we have classifiedinto a taxonomyalong two
independenaxes:automatiorandcompletenesi23]. We distinguishverificationmethodshasednthelevel
of automationthey support:manual,semi-automatedr automatedManual methodsinvolve humanswho
readthe specificationandconstructthe proofs. Semi-automatedhethodsinvolve somecomputerprograms
(amodelchecler or theoremprover) which areguidedby humansvho understandhe specificatiorandpro-
vide the programswith the invariantsor lemmasto prove. Automatedmethodstake the humanout of the
loop andinvolve a computemprogramthatreadsa specificatiorandproducesa correctnesgroof completely
automaticallyWe alsodistinguishtechniqueshatarecomplete(proof thata systemimplementsa particular
consisteng model)from thosethatareincomplete(proof of coherencer selectednvariants).Table20 pro-

vides a summary of our taxonomife discuss each column of the table separatelywbelo

4. Formalmethodsnvolve constructiorof rigorousmathematicaproofsof correctnessvhile informal methodsnclude
suchtechniquesssimulationandrandontestingwhich do notguaranteeorrectnessiVe only consideformalmethods
in this review.
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Manualtechniguest.azy caching[2] wasoneof the earliestexamplesof a formal specificatiorandverifica-

tion of a protocol(lazy caching)thatimplementedsequentiabonsisteng. The authorsusel/O automateaas
theirformal systemmodelsandprovide amanualproofthatalazy cachingsystemimplementsSC.Theiruse
of historyvariablesin the proof is similar to the mannerin which we useLamportClock timestampsn our
proofs. Gibbonset al. [12] provide a framework for verifying that sharedmemory systemsimplement
relaxed memorymodels.The methodinvolvesspecifyingboththe systemto beverified aswell asanopera-
tional definition of a memorymodelas|/O automataandthen proving that the systemautomatonmple-
mentsthe modelautomaton As an example,they provide a specificationof the StanfordDASH memory
systemand manually prove that it implementsthe ReleaseConsisteng memory model. Our table-based

specification methodology is complementary in that it could also be used to describe 1/O automata.

Our previous paperg25, 21, 6, 15] specifiedvarioussharednemorysystemgdirectoryandbus protocols)
atahighlevel, andemployed manualproofsusingour LamportClockstechniqueto shav thatthesesystems
implementedrariousmemorymodels(SC, TSO, Alpha). This paperis our latesteffort which demonstrates
our techniqueappliedto more detailedtable-basedpecificationsof snoopingprotocols.Shenand Arvind
[24] proposeusing term rewriting systems(TRSs)to both specify and verify memory systemprotocols.
Their verificationtechniqueanvolvesshowingthatthe systemunderconsideratiorandthe operationadefi-
nition of amemorymodel,whenexpressedsTRSs,cansimulateeachother.This prooftechniquas similar
to the /0 automataapproachusedby Gibbonset al. [12]. Both TRSsand our table-basedpecification
methodcanbe usedin amodularandflexible fashion.A drawbackof TRSsis thattheylack the visualclar-
ity of ourtable-basedpecification Althoughtheir currentproofsaremanual they mentionthe possibility of

using a model checker to automate tedious parts of the proof.

Semi-automatetbchniquesPark andDill [19] provide an executablespecificationof the SunRMO mem-
ory modelwritten in the languageof the Murd modelchecler. This languagewhich is similar to a typical
imperative programminganguageis unambiguoudut not necessarilcompact.They usethis specification
to checkthecorrectnessf smallsynchronizatiomoutines EirikssonandMcMillan [8] describea methodol-
ogy which integratesdesignandverificationwherecommonstatemachinetablesdrive a modelchecler and
generator®f simulatorsanddocumentationThe protocol specificationtablesthey describeweredesigned
to be consumedy automatedyeneratorsatherthanby humansandthey do not describethe formatof the
text specificationgeneratedrom thesetables.They usethe SMV modelchecler (which acceptspecifica-
tionsin temporallogic) to prove the coherencef the protocolusedin the SGI Origin 2000. However, the
systemverifiedhadonly onecacheblock (whichis sufficientto prove coherencebut not consisteng). Pong
etal. [22] verify the memorysystemof the SunS3.mpmultiprocessousingthe Mur¢ andSSM (Symbolic
StateModel) modelcheclers,but again the verified systemhadonly onecacheblock andthuscannotverify
whetherthe systemsatisfiesa memorymodel.Park andDill [20] expressboththe definition of the memory
modelandthe systembeingverifiedin the samespecificationanguageandthenuse“aggregation” to map

the systemspecificationto the modelspecification(similar to the useof TRSsby ShenandArvind[24] and

26



I/O automataby Gibbonsetal. [12]). As anexample,they specifythe StanfordFLASH protocolin thelan-
guageof the PVStheoremprover (the languages a typedhigh-orderlogic) and usethis aggreation tech-
nigueto prove thatthe“Delayed” modeof the FLASH memorysystemis sequentiallyconsistentAkhiani et
al. [3] summarizeheir experiencewith usingTLA+ (aform of temporallogic) anda combinationof manual
proofsanda TLA+ modelchecler (TLC) to specifyandverify the CompagAlpha 21264and21364mem-
ory systemprotocols Althoughthey did find a bug thatwould not have beencaughtby simulationor model
checkingtheirmanualproofswerequitelargeandonly a smallportioncouldbefinishedevenwith 4 people
and7 person-monthsf effort. The TLA+ specificationsare completeandformal, but they areboth nearly
two thousandines long. Nalumasuet al. [11, 18] proposean extensionof Collier's ArchTestsuite which
providesacollectionof programghattestcertainpropertiesof amemorymodel.Their extensioncreateshe
effect of having infinitely long testprogramgandthuscheckingall possibleinterleasings of testprograms)
by abstractinghe testprogramsnto non-deterministidinite automatavhich drive formal specification®f
the systembeingverified. Both the automataandtheimplementationsverespecifiedn Verilog andthe VIS
symbolicmodelcheclerwasusedto verify thatvariousinvariantsaresatisfiecby the systemwhendrivenby
theseautomataThetechniquds usefulin practiceandhasbeenappliedto commerciakystemssuchasthe
HP PA-8000 Runway bus protocol.However, it is incompletein thattheinvariantsbeingtesteddo notimply

SC (thg are necessarput not suficient).

AutomatedtechniquesHenzingeret al. [14] provide completelyautomatedproofs of lazy and a certain
snoojy cachecoherencerotocolusingthe MOCHA modelchecler. Their protocolspecificationgwith the
systembeingexpressedn alanguagesimilar to a typical imperatve programminganguageandthe proof
requirementgxpressedn temporallogic) areaugmentedvith a specificationof a “finite obserer” which
canreorderprotocoltransactionsn orderto producea witnessorderingwhich satisfiesthe definition of a
memorymodel. They provide suchobsenrersfor the two protocolsthey specifyin the paper However, the
generabroblemof verifying sequentiatonsisteng is undecidableandsuchfinite obsenersdo not exist for
the protocolswe specifyin this paperor in the protocolsusedin modernhigh-performancehared-memory

multiprocessors.

To the bestof our knowledge,thereareno publishedexamplesof a completelyautomategroof of correct-

ness of a system specified ata level of abstraction.

5 Conclusions

In this paper we have developeda specificationmethodologythat documentsand specifiesa cachecoher-
enceprotocolin eighttables:the statesgvents,actions andtransitionsof the cacheandmemorycontrollers.
We have usedthis methodologyto specifya detailed low-level three-statdroadcassnoopingprotocolwith

anunordereddatanetwork andan orderedaddressietwork which allows arbitrary skew. We have alsopre-
senteda detailed,low-level specificationof the Multicast Snoopingprotocol[5], and,in doing so,we have

shavn theutility of thetable-basedpecificatiormethodologyl astly, we have demonstrated techniquefor
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verificationof the Multicast Snoopingprotocol,throughthe sketchof a manualproof thatthe specification

satisfies a sequentially consistent memory model.
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Appendix A: Excerpt from Proof of Sequential Consistency

In this appendixwe includea precisedefinitionof alegal transactiorsequenceandwe prove thatprocessor
transitionsmaplegal historiesto historiesin whichthetransactiorsequencés legal. Otherpartsof the proof
can be done in a similar manner

A.1 Legal Transaction Sequences

Intuitively, the definition of a legal transactionsequenceules out sequenceshat do not make senseFor
example,a GETX on block B in which the maskdoesnot includeall processorshat“currently” may have
Sharedor Modified accesgo B shouldnot be successfulBy “currently,” we arereferringto a momentin
which all transaction®ccurringbeforethe GETX to block B in thetransactiorsequencarecompletedand
no furthertransactionsreyet handled We usean A-statevectorto recordthetype of acces®achprocessor
mayhave to agivenblock uponcompletionof asequencef transactionsThe A-statevectorfor block B has
P elementseachof which s eitherinvalid, Sharedpr Modified. Also, throughoutthe appendixwe denote
anentryof thetransactiorsequencasatuple <Trans,Mask,RetryNum,Pul&tatus, whereTransis atriple
denotingthe requesteraddressand transactiontype (GETX, GETS, or PUTX) and the meaningof the
remaining entries of the tuple should be clear from the description in S8@&ion

We first definethe notion of a determinedegal transactionsequencandits associated\-state. Here,deter-
minedsimply refersto thefactthatthe outcome=f all transactionén the sequencéiave beendeterminedo
be successaflure or nack.

* Theemptysequencd) is a determinedegal transactiorsequencevith associated\-statevectorsA =
<I, I, ..., I> for each block.

¢ If TransSeqdenotes a determined legal transaction sequence,then TransSeq' = (TransSeq
<Trans,Mask,RetryNum,Pul§&tatus) is alsoa determinedegal transactiorsequencéf the following
conditions are true. In what folles, letTransbe on blockB, and let the requester @fansber.

A.1.1 Statuscannot be UNDETERMINED.
A.1.2 If Status=s SUCCESSthenMaskis suficientwith respecto TransSegA maskM is sufiicientwith
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respecto TransSedf, whenA is the A-statevectorfor block B associateavith TransSegwe have M; =
1 for all nodes with A, =M orA; = S.

A.1.3 If RetryNumis 0, thenthemostrecenttuplein TransSeqvith requester N onblock B (if ary) has
status that is either SUCCESS dkGK. If Retry Numis greater than 0 then the most recent tuple in
TransSequith requester N onblock B musthave thesametransactiortypeasTrans musthave aretry
number that is less thadetry Numand must hae status Failure.

The A-stateassociatedavith TransSeqfor all blocksotherthanblock B is the sameasthatassociatedvith

TransSeqFor block B, the A-stateA’ associateavith TransSeqis the sameasA exceptfor the following

changes:

TABLE 21. Successful transactions

GETS A/ = S and for api with Aj =M, A’ = S.
GETX A’ = M and fori not equal ta, A = I.
PUTX A’ =L

Finally, a transaction sequentensSeds alegal transaction sequendggthe following conditions hold:

A.1.4 TransSeds a concatenation of a determinegdletransaction sequencEansSeg, with a
sequence of tuples whoSgéatusis UNDETERMINED.

A.1.5 Tuples inTransSeare ordered bfPulse with UNDEFINED pulses occurring in arbitrary order at
the end of the sequence.

A.1.6 Tuples inTransSeqvith determinedtatusmust also hee a definedPulse

A.1.7 For all N and B there is at most one tupldiansSeqvith requester=N, address=B, and
StatusUNDETERMINED.

A.1.8 For each tuple T ifransSeqvith StatusUNDETERMINED, if theStatusof T is replaced by
FAILURE or NACK andPulseis set to a definedalue, therransSeg, T is a determined ¢al
transaction sequence.

A.1.9 For each tuple T ifransSeqvith Status UNDETERMINED, if theMaskof T is suficient with
respect tolransSeg (as defined in condition A.1.2 al®), the status of T is replaced by SUCCESS,
andPulseis set to a definedalue, therransSeg, T is a determined ¢ml transaction sequence.

In whatfollows, supposédhata determinedegal transactiorsequencef lengthatleastt is fixedanda block

B is fixed.Let A bethe A-statefor block B associatedvith the prefix of this transactiorsequencef lengtht.

Then we say that the A-state of processairtime t isA; and we denote it bg(t).

A.2 CacheController Transitions map legal historiesto historieswith legal
transaction sequences.

Eachentryof Table22 pointsto the proof of why thetransitionatthecorrespondin@ntryof Table13(cache
controllertransitionspecification)mapsalegal globalhistory, <TransSeq,Ops,Configtg anew globalhis-
tory, <TransSeq’,Ops’,Config’#n which TransSeqis legal. As usual,the transitionis doneby nodeN on
block B, and we assume that the logical time of NO@mfig is t.

a)In thiscaseprocessoN’sstateis I, S,or M. By constructiorof theprotocol, Tables12and13,actions

f, g, or p, a transaction T is issued with TYPE GETS, GETX, or PUTX. By action a, the retry number
must be 0. Therefor@ransSeq’ = TansSeq], where T=<<B,TYPE,N\,0,UNDEFINED,UNDE-
TERMINED>.

For each condition of the definition of aj# transaction sequence, we list the reasonsfnsSeq’
satisfies that condition. Throughout, we denote the determigalddlieefix of TransSedy TransSeg;
note that this is also the determined prefiXtainsSeq’
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TABLE 22. Legality of transition from <Trans,Ops,Config*o <Trans’,Ops’,Config’> where the
transition isdone by processor N at logical timet, with respect to block B.

= 5
g2 B
= S g
o B 2 = =
© © £ S ] G
o = = = = » X x B g
o o > o n X o0 X < - - =
- Q 5 — = = = L w o
= T = < % w w w L ) = =
c o (@) O £ =
21 8 = et S = =5 c c c c c g E E < s | x X
) _ b ] s = oOx ®] o O O O ©] O O [a)] [a) c c
| a a a a z z z
S a a a a z z z z z
M z z z z a a z z z
ISAP z z z z z z z z z z z z z z
IMAD |z z z z z z z z z z z z z z
SMAP z z z z z z z z z z z z z z
ISA z z z z z z z z z z z
IMA ]z z z z z z z z z z z
sw z z z z z z z z z z z
Ish z z z z z z z z z z z
IMA z z z z z z z z z z z
s z z z z z z z z z z z
MIA z z z z z z z z z z
nA z z z z z z z z z z
ISP z z z z z z z z z z z z z z
ISP z z z z z z z z z z z z z z
IMP z z z z z z z z z z z z z z
IMPs z z z z z z z z z z z z z z
IMP z z z z z z z z z z z z z z
IMPs| z z z z z z z z z z z z z z
sMP z z z z z z z z z z z z z z
sMPs z z z z z z z z z z z z z z

A.1.4: TransSeqis aconcatenatiof adeterminedegal transactiorsequenceavith a sequencef tuples
whose status is UNDETERMINED, singeansSeds such a sequence and since T has UNDETER-
MINED status

A.1.5: Tuples inTransSeqare ordered by pulse, with UNDEFINED pulses occurring in arbitrary order
at the end of the sequence, sificensSecsatisfies this property and T has UNDEFINED pulse

A.1.6: Tuples inTransSeqwith determined status must alsovéa@ defined pulse, since all tuples of
TransSeqgWwith determined status areTnansSe@ndTransSecgatisfies A.1.6.

A.1.7: For (node, block) pairs other than (N,BjansSeghas at most one tupleth requester=node,
address=block, and UNDETERMINED status sificensSegatisfies this condition and since T has
requester = N and address = B. It remains tovgdhat among the tuples TansSeqvith status =
UNDETERMINED, there are none with both requester = N and address= B. Thigsfbkzause the
definition of legyal configuration (not included in this document) states that, if a processor N at logical
timetisin oneof stated, S,or M, thenthereis notransactiorin TransSeqvith requester N, address

B, and pulse either >t or undefined.
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A.1.8: TransSecpatisfies A.1.8; thus it remains to shthatTransSeg, <<B,TYPE,N>M,0,RFAIL-
URE>is adeterminedegal transactiorsequenceThisis truefor thefollowing reasonsFirst, TransSeg
is adeterminedegal transactiorsequenceandsowe needto showv thatconditionsA.1.1- A.1.3 aresatis-
fied.

- A.1.1: The status of Tis not UNDETERMINED since it is AILURE.

- A.1.2: This does not applgince the status isANH.URE.

- A.1.3: SinceRetry Nunequals 0 it is stitient to shav that the most recent transactiorniansSeg
with requester = N and address= B has status equal to either SUCCH&SKirAs in A.1.7 abue,
thisfollows becauséhedefinitionof legal configuratiorstateghat,if aprocessoN atlogicaltimetisin
one of states |, S, or M, then there is no transactidnainsSeqvith requester = N, address = B, and
pulseeither>t or undefinedmorewer, the mostrecentransactiorwith requester N andaddress: B is
eitherSUCCESSr NACK. SinceTransSeg is asubsequencef TransSe@f lengthatleastt, thesame
two properties must hold farransSeg.

A.1.9: TransSecpatisfies A.1.9; thus it remains to shthatTransSeg, <<B,TYPE,N>M,0,RSUC-
CESS=>is adeterminedegal transactiorsequenceassuminghatthe Maskof T is sufficient. First, Trans-
Seg, is adeterminedegal transactiorsequenceandsowe needto shav thatconditionsA.1.1-A.1.3are
satisfied.

- A.1.1: The status of Tis not UNDETERMINED since it is SUCCESS.

- A.1.2: The masM is suficient by assumption.

- A.1.3: Identical egument as for A.1.8 abe.

z) In this caseJransSeq’ = TansSe@ndTransSeds legal. ThereforeTransSeds legal.
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