
1

Specifying and Verifying a Broadcast and a Multicast
Snooping Cache Coherence Protocol

Daniel J. Sorin1, Manoj Plakal1, Anne E. Condon1,2,
Mark D. Hill1, Milo M. Martin1, and David A. Wood1

Abstract

In thispaper, wedevelopa specificationmethodology thatdocumentsandspecifiesa cachecoherenceproto-

col in eighttables:thestates,events,actions,andtransitionsof thecacheandmemorycontrollers.We then

usethis methodology to specifya detailed,low-level three-statebroadcastsnoopingprotocolwith an unor-

dereddatanetworkandan orderedaddressnetworkthat allowsarbitrary skew. We alsopresenta detailed,

low-levelspecificationof a new protocolcalledMulticastSnooping[5], and,in doingso,webetterillustrate

theutility of the table-basedspecificationmethodology. Lastly, wedemonstratea techniquefor verification

of the Multicast Snoopingprotocol, throughthe sketch of a manualproof that the specificationsatisfiesa

sequentially consistent memory model.

Index Terms:cachecoherence,protocolspecification,protocolverification,memoryconsistency, multicast

snooping

1 Intr oduction

A cachecoherenceprotocolis aschemefor coordinatingaccessto sharedblocksof memory. Processorsand

memoriesexchangemessagesto sharedataandto determinewhich processorshave read-onlyor read-write

accessto datablocksthatarein theircaches.A processor’saccessto acacheblock is determinedby thestate

of that block in its cache,andthis stateis generallyoneof the five MOESI (Modified, Owned,Exclusive,

Shared,Invalid) states[26]. Processorsissuerequests,suchasGetExclusiveor GetShared,to gainaccessto

blocks.They canalso loseaccessto blocks,eitherby choice(e.g.,a cachereplacement)or whenanother

processor’s requeststealsa block away. Many invalidateprotocolsmaintain the invariant that therecan

either be one writer and no readers or no writer and any number of readers.

What is protocol specification?Cachecoherenceprotocolsfor sharedmemorymultiprocessorsareimple-

mentedvia theactionsof numeroussystemcomponentsandthe interactionsbetweenthem.Thesecompo-

nentsincludecachecontrollers,directorycontrollers,andnetworks, amongothers.The specificationof a

1Computer Sciences Department
1210 West Dayton Street

University of Wisconsin — Madison
Madison, WI 53706

USA

2The Department of Computer Science
201-2366 Main Mall

University of British Columbia
Vancouver, B.C.
Canada V6T 1Z4

2

cachecoherenceprotocolmustdetailtheactionsof eachof thesecomponentsfor everycombinationof state

it could be in andevent that could happen.For example,it mustspecifythe actionsperformedby a cache

controllerthathasExclusive accessto a cacheblock whena GetSharedrequestfor thatblock arrivesfrom

another node, and it must specify the new state that the cache controller enters.

What is protocol verification? Verificationof a cachecoherenceprotocolinvolvesproving thata protocol

specificationobeysadesiredmemoryconsistency model,suchassequentialconsistency (SC)[17]. To verify

that a protocol satisfiesa coherenceprotocol requiresproving that it obeys certaininvariantsaboutwhat

valuea loadfrom memorycanreturn.For example,to satisfySC,theloadsandstoresfrom thedifferentpro-

cessorsmustappearto the programmerto be in sometotal orderwhere(a) the valueof a load equalsthe

valueof themostrecentstoreto thesameaddressin thetotal order, and(b) thetotal orderrespectsthepro-

gram order at each of the processors.

Why is verification difficult? At a high level, protocolscanberepresentedasin Figure1, which illustrates

the specificationof a cachecontroller for a threestate(Modified, Shared,Invalid) protocol.Thereare a

handful of states, with atomic transitions between them.

Since,at a high level, cachecoherenceprotocolsaresimply finite statemachines,it would appearat first

glancethat it would beeasyto specifyandverify a commonthreestate(MSI) broadcastsnoopingprotocol.

Unfortunately, at the level of detail requiredfor an actualimplementation,even seeminglystraightforward

protocolshave numeroustransientstatesandpossibleraceconditionsthatcomplicatethetasksof specifica-

tion andverification.For example,a singlecachecontrollerin a “simple” MSI protocolthatwe will specify

in Section2.1has11states(8 of whicharetransient),13possibleevents,and21actionsthatit mayperform.

Theothersystemcomponentsaresimilarly complicated,andtheinteractionsof all of thesecomponentsare

difficult to specify and verify.

Why is verification important? Rigorousverification is important,sincethe complexity of a low-level,

implementableprotocolmakesit difficult to designwithout any errors.Many protocolerrorscanbeuncov-

eredby simulation.Simulationwith randomtestinghasbeenshown to beeffective at finding certainclasses

FIGURE 1. High-level specification for cache controller

Put Shared
or

Invalidate

M

I S

Put
Exclusive

Downgrade

Exclusive
Get

Invalidate
or

Upgrade

Get Shared

3

of bugs,suchaslost protocolmessagesandsomedeadlockconditions[27]. However, simulationtendsnot

to be effective at uncovering subtlebugs,especiallythoserelatedto the consistency model.Subtleconsis-

tency bugsoftenoccuronly underunusualcombinationsof circumstances,andit is unlikely thatun-directed

(or random)simulationwill drive theprotocolto thesesituations.Thus,systematicandperhapsmoreformal

verification techniques are needed to expose these subtle bugs.

Verification requires a detailed, low-level specification. Systematicverification of an implementable

cachecoherenceprotocolrequiresa low-level, detailedspecificationof theentireprotocol.While thereexist

numerousverificationtechniques,all of thesetechniquesseekto show thatan implementablespecification

meetscertaininvariants.Verifying anabstractspecificationonly shows that theabstractprotocolis correct.

For example,theverificationof a high-level specificationwhich omitstransientstatesmayshow thatinvari-

antshold for thisabstractionof theprotocol,but it will notshow thatanimplementableversionof thisproto-

col obeys these invariants.

Curr ent specificationsare not sufficient. Specificationsthathave beenpublishedin theliteraturehave not

beensufficiently detailedfor implementationpurposes,andthey arethusnot suitablefor verificationpur-

poses.In academia,protocolspecificationstendto behigh-level, becausea completelow-level specification

maynotbenecessaryfor thegoalof publishingresearch[4,7,13].Moreover, acompletelow-level specifica-

tion without a conciseformatdoesnot lenditself to publicationin academia.In industry, low-level, detailed

specificationsarenecessaryandexist, but, to thebestof ourknowledge,nonehavebeenpublishedin thelit-

erature.Thesespecificationsoftenmatchthehardwaretooclosely, whichcomplicatesverificationandlimits

alternative implementationsbut eliminatesthe problemof verifying that the implementationsatisfiesthe

specification.

A newtable-basedspecificationtechniquethat is sufficient for verification. To addresstheneedfor con-

ciselow-level specifications,we have developeda table-basedspecificationmethodology. For eachsystem

componentthatparticipatesin thecoherenceprotocol,thereis a tablethatspecifiesthecomponent’s behav-

ior with respectto a givencacheblock. As anillustrative example,Table1 shows a specificationfor a sim-

plified atomic cache controller.

Therows of the tablecorrespondto thestatesthat thecomponentcanenter, thecolumnscorrespondto the

eventsthatcanoccur, andtheentriesthemselvesaretheactionstakenandresultingstatethatoccurfor that

combinationof stateandevent.The actionsarecodedwith letterswhich aredefinedbelow the table.For

example,theentrya/SdenotesthataLoadeventat thecachecontrollerfor ablock in stateI causesthecache

controller to perform a Get Shared and enter state S.

This simpleexample,however, doesnot show thepower of our specificationmethodology, becauseit does

not includethe many transientstatespossessedby realisticcoherenceprotocols.For simpleatomicproto-

cols, the traditional specificationapproachof drawing up statetransitiondiagramsis tractable.However,

non-atomictransactionscausean explosion in the statespace,since events can occur betweenwhen a

4

requestis issuedandwhen it completes,andnumeroustransientstatesareusedto capturethis behavior.

Section2 illustratesthe methodologywith a more realistic broadcastsnoopingprotocol and a multicast

snooping protocol [5].

A methodologyfor proving that table-basedspecificationsare correct. Usingour table-basedspecifica-

tion methodology, we presenta methodologyfor proving thata specificationis sequentiallyconsistent,and

we show how this methodologycanbe usedto prove that our multicastprotocolsatisfiesSC.Our method

usesanextensionof Lamport’s logical clocks[16] to timestamptheloadandstoreoperationsperformedby

theprotocol.Timestampsdeterminehow operationsshouldbe reorderedto witnessSC,asintendedby the

designerof the protocol.Thus,associatedwith any executionof the augmentedprotocol is a sequenceof

timestampedoperationsthatwitnessessequentialconsistency of thatexecution.Logicalclocksandtheasso-

ciatedtimestampingactionsare,in effect,a conceptualaugmentationof theprotocolandarespecifiedusing

the sametable-basedtransitiontablesas the protocol itself. We note that the setof all possibleoperation

tracesof theprotocolequalsthatof theaugmentedprotocol,andthatthelogicalclocksarepurelyconceptual

devicesintroducedfor verificationpurposesandarenever implementedin hardware.We considerthepro-

cessof specifyinglogical clocksandtheir actionsto beintuitive for thedesignerof theprotocol,andindeed

the process is a valuable debugging tool in its own right.

A straightforwardinvariantof theaugmentedprotocolguaranteesthattheprotocolis sequentiallyconsistent.

Namely, for all executionsof theaugmentedprotocol,theassociatedtimestampedsequenceof LDs andSTs

is consistentwith theprogramorderof operationsat all processorsandthevalueof eachLD equalsthatof

themostrecentST. To prove this invariant,numerousother“support” invariantsareaddedasneeded.It can

beshown thatall executionsof theprotocolsatisfyall invariantsby inductionon thelengthof theexecution.

This involves a tedious case-by-case analysis of each possible transition of the protocol and each invariant.

To summarize,thestrengthsof ourmethodologyarethattheprocessof augmentingtheprotocolwith times-

tampingis useful in designingcorrectprotocols,andan easily-statedinvariantof the augmentedprotocol

guaranteessequentialconsistency. However, ourmethodologyalsoinvolvestediouscase-by-caseproofsthat

TABLE 1. Simplified Atomic Cache Controller Transitions

Event

Load Store Other GETS Other GETX
S

ta
te

I a/S c/M

S h c/M I

M h h dm/S d/I

a: perform Get-Shared d: send data to requestor h: cache hit

c: perform Get-Exclusive m: send data to memory

5

transitionsrespectinvariants.To our knowledge,no automatedapproachis known that avoids this type of

caseanalysis.Becausetheproblemof verifying SCis undecidable,automatedapproacheshavebeenproved

to work only for a limited classof protocols(suchasthosein which a finite stateobserver canreorderoper-

ationsin orderto find a witnessto sequentialconsistency [14]) that doesnot includethe protocolsof this

paper. We will discuss other verifications techniques and compare them to ours in Section4.

What have we contributed? This papermakes four contributions. First, we develop a new table-based

specificationmethodologythat allows us to conciselydescribeprotocols.Second,we provide a detailed,

low-level specificationof a three-statebroadcastsnoopingprotocolwith anunordereddatanetwork andan

addressnetwork which allows arbitraryskew. Third, we presenta detailed,low-level specificationof multi-

castsnooping[5], and,in doingso,we betterillustratetheutility of thetable-basedspecificationmethodol-

ogy. Thespecificationof this morecomplicatedprotocolis thoroughenoughto warrantverification.Fourth,

wedemonstrateatechniquefor verificationof theMulticastSnoopingprotocol,throughthesketchof aman-

ual proof that the specification satisfies a sequentially consistent memory model.

2 Specifying Broadcast and Multicast Snooping Protocols

In this section,we demonstrateour protocol specificationmethodologyby developing two protocols:a

broadcastsnoopingprotocolanda multicastsnoopingprotocol.Both protocolsareMSI (Modified,Shared,

Invalid) and use eight tables to document and specify:

• the states, events, actions, and transitions of the cache controller

• the states, events, actions, and transitions of the memory controller

Thecontrollersarestatemachinesthatcommunicatevia queues,andeventscorrespondto messagesbeing

processedfrom incomingqueues.Theactionstakenwhena controllerservicesan incomingqueue,includ-

ing enqueuing messages on outgoing queues, are considered atomic.

2.1 Specifying a Broadcast Snooping Protocol

In this section, we shall specify the behavior of an MSI broadcast snooping protocol.

2.1.1 System Model and Assumptions

Thebroadcastsnoopingsystemis a collectionof processornodesandmemorynodes(possiblycollocated)

connected by two logical networks (possibly sharing the same physical network), as shown in Figure2.

A processornodecontainsa CPU,cache,anda cachecontrollerwhich includeslogic for implementingthe

coherenceprotocol.It alsocontainsqueuesbetweentheCPUandthecachecontroller. TheMandatoryqueue

containsLoads(LDs) andStores(STs)requestedby theCPU,andthey areorderedby programorder. LD

andST entrieshave addresses,andSTshave data.TheOptionalqueuecontainsRead-OnlyandRead-Write

Prefetchesrequestedby theCPU,andtheseentrieshave addresses.TheLoad/StoreDataqueuecontainsthe

LD/ST from the Mandatoryqueueandits associateddata(in the caseof a LD). A diagramof a processor

node is also shown in Figure2.

6

The memoryspaceis partitionedamongone or more memorynodes.It is responsiblefor respondingto

coherencerequestswith dataif it is the currentowner (i.e., no processornodehasthe block Modified). It

also receives writebacks from processors and stores this data to memory.

The two logical networks area totally orderedbroadcastnetwork for addressmessagesandan unordered

unicastnetwork for datamessages.Theaddressnetwork supportsthreetypesof coherencerequests:GETS

(Get-Shared),GETX (Get-Exclusive) andPUTX (Dirty-Writeback).Protocoltransactionsareaddressmes-

sagesthat containa datablock address,coherencerequesttype (GETX, GETS,PUTX), andthe ID of the

requesting processor. Data messages contain the data and the data block address.

All of thecomponentsin thesystemmake transitionsbasedon their currentstateandcurrentevent(e.g.,an

incomingrequest),andwe will specifythestates,events,andtransitionsfor eachcomponentin the restof

this section.Therearemany componentsthatmake transitionson many blocksof memory, andthesetransi-

tions canhappenconcurrently. We assume,however, that thesystemappearsto behave asif all transitions

occur atomically.

2.1.2 Network Specification

Thenetwork consistsof two logical networks.Theaddressnetwork is a totally orderedbroadcastnetwork.

Total orderingdoesnot,however, imply thatall messagesaredeliveredat thesametime.For example,in an

asynchronousimplementation,the path to one nodemay take longer than the path to anothernode.The

addressnetwork carriescoherencerequests.A transitionof the addressnetwork is modeledasatomically

transferringanaddressmessagefrom theoutputqueueof anodeto theinputqueuesof all of thenodes,thus

inserting the message into the total order of address messages.

FIFO

Address network

CPU
Cache and Controller

Data network

Load/Store-Data

Optional Queue

TBEs

Mandatory Queue
FIFO

Address Network

Point to Point Data Network

Broadcast

P P PM M M

Processor Node

FIFO

FIGURE 2. Broadcast Snooping System

7

Thedatanetwork is anunorderedpoint-to-pointnetwork for deliveringresponsesto coherencerequests.A

transitionof thedatanetwork is modeledasatomicallytransferringadatamessagefrom theoutputqueueof

a node to the input queue of the destination node.

All nodesareconnectedto the networks via queues,andall we assumeaboutthesequeuesis that address

queuesfrom thenetwork to the nodesareserved in FIFO order. Dataqueuesandaddressqueuesfrom the

nodesto the network can be served without this restriction.For example,this allows a processornode’s

GETX to pass its PUTX for the victim block.

2.1.3 CPU Specification

A transitionof theCPUoccurswhenit placesa LD or ST in theMandatoryqueue,placesa Prefetchin the

Optional queue, or removes data from the LD/ST data queue. It can perform these transitions at any time.

2.1.4 Cache Controller Specification

In eachtransition,acachecontrollermayinspecttheheadsof its incomingqueues,injectnew messagesinto

its queues,andmake appropriatestatechanges.All we assumeaboutservingincomingqueuesis that no

queueis starvedandthat theAddress,Mandatory, andOptionalqueuesareservedin strict FIFO order. The

actionstaken whena queueis served areconsideredatomicin that they areall donebeforeanotherqueue

(including the samequeue)is served. Before any of the actionsare taken, however, the cachecontroller

checksto ensurethatresources,suchasspacein anoutgoingqueueor anallocatedTBE, areavailablefor all

of theactions.If thesumof theresourcesrequiredfor all of theactionsis not available,thenthecachecon-

troller abortsthetransition,performsnoneof theactions,andwaitsfor resourcesto becomeavailable(where

wedefineacacheblock to beavailablefor aLD/ST if eitherthereferencedblockalreadyexistsin thecache

or thereexistsanemptyslot which canaccommodatethereferencedblock whenit is receivedfrom external

sources).Theexceptionto this rule is having anavailableblock in thecache,andthissituationis handledby

treatinga LD, ST, or Prefetchfor which no cacheblock is availableasa Replacementevent for thevictim

block.

If the requestat theheadof theMandatoryor Optionalqueuecannotbeserviced(becausetheblock is not

presentwith thecorrectpermissionsor a transactionfor theblock is outstanding),thenno further requests

from that queue can be serviced. Optional requests can be discarded without affecting correctness.

The cachecontrollerkeepsa countof all outstandingcoherencetransactionsissuedby that nodeand,for

eachsuchtransaction,oneTransactionBuffer Entry (TBE) is reserved.No transactionscanbeissuedif there

is no spacein theoutgoingaddressqueueor if thereis alreadyanoutstandingtransactionfor thatblock. A

TBE containstheaddressof theblock requested,thecurrentstateof thetransaction,andany datareceived.1

1. Thedatafield in theTBE maynotberequired.An implementationmaybeableto usethecache’sdataarrayto buffer
thedatafor theblock.Thismodificationreducesthesizeof aTBE andavoidsspecificactionsfor transferringdatafrom
the TBE to the cache data array.

8

Thepossibleblock statesanddescriptionsof thesestatesarelistedin Table2. Notethat therearetwo types

of “states”for acacheblock: the“stable” stateandthe“transient”state.Thestable state is oneof M (Modi-

fied), S (Shared),or I (Invalid), it is recordedin thecache,andit indicatesthestateof theblock beforethe

latestoutstandingtransactionfor that block (if any) started.The transient state, as shown in Table2, is

recordedin a TBE, and it indicatesthe currentstateof an outstandingtransactionfor that block (if any).

Whenfuture tablesrefer to the stateof a block, it is understoodthat this stateis obtainedby returningthe

transientstatefrom a TBE (if thereis anoutstandingtransactionfor this block), or else(if thereis no out-

standingtransaction)by accessingthe cacheto obtainthe stablestate.Blocks not presentin the cacheare

assumedto have thestablestateof I. Eachtransientstatehasanassociatedcachestate,asshown in Table2,

assumingthat the tagmatchesin thecache.A cachestateof busy implies that thereis a TBE entry for this

block, and its state is a transient state other than MIA or IIA.

To representthetransientstatessymbolically, wehavedevelopedanencodingof thesetransientstateswhich

consistsof asequenceof two or morestablestates(initial, intended,andzeroor morependingstates),where

the secondstatehasa superscriptwhich denoteswhich part(s)of the transaction- address(A) and/ordata

(D) - arestill outstanding.For example,a processorwhich hasblock B in stateI, sendsa GETSinto the

Address-Outqueue,andseesthedataresponsebut hasnot yet seentheGETS,would have B in stateISA.

When the GETS arrives, the state becomes S.

Eventsat thecachecontrollerdependon incomingmessages.Theeventsarelistedanddescribedin Table3.

Notethat,in thecaseof Replacements,block B refersto theaddressof thevictim block.Theallowedcache

controlleractionsare listed in Table4. Cachecontrollerbehavior is detailedin Table5, whereeachentry

containsa list of <actions / next state> tuples.Whenthecurrentstateof a block correspondsto the row of

TABLE 2. Broadcast Snooping Cache Controller States

TBE
State

Cache
State Description

I invalid

S shared

M modified

ISAD busy invalid, issued GETS, have not seen GETS or data yet

ISA busy invalid, issued GETS, have not seen GETS, have seen data

ISD busy invalid, issued GETS, have seen GETS, have not seen data yet

IMAD busy invalid, issued GETX, have not seen GETX or data yet

IMA busy invalid, issued GETX, have not seen GETX, have seen data

IMD busy invalid, issued GETX, have seen GETX, have not seen data yet

MIA I modified, issued PUTX, have not seen PUTX yet

IIA I modified, issued PUTX, have not seen PUTX, then saw other
GETS or GETX (reachable from MIA)

Stable
states

Transient
states

9

theentryandthenext eventcorrespondsto thecolumnof theentry, thenthespecifiedactionsareperformed

andthestateof theblock is changedto thespecifiednew state.If only a next stateis listed,thenno actionis

required. All shaded cases are impossible.

2.1.5 Memory Node Specification

Oneof theadvantagesof broadcastsnoopingprotocolsis that thememorynodescanbequitesimple.The

memorynodesin this system,like thosein theSynapse[9], maintainsomestateabouteachblock for which

this memorynodeis thehome,in orderto make decisionsaboutwhento senddatato requestors.This state

includesthestateof theblockandthecurrentownerof theblock.Memorystatesarelistedin Table6, events

are in Table7, actions are in Table8, and transitions are in Table9.

2.2 Specifying a Multicast Snooping Protocol

In this section,we will specify an MSI multicastsnoopingprotocol with the samemethodologyusedto

describethe broadcastsnoopingprotocol.Multicast snoopingrequireslesssnoopbandwidthandprovides

TABLE 3. Broadcast Snooping Cache Controller Events

Event Description Block B
Load LD at head of Mandatory queue address of LD at head of Manda-

tory Queue

Read-Only

Prefetch

Read-Only Prefetch at head of Optional
queue

address of Read-Only Prefetch at
head of Optional Queue

Store ST at head of Mandatory queue address of ST at head of Manda-
tory Queue

Read-Write
Prefetch

Read-Write Prefetch at head of Optional
queue

address of Read-Write Prefetch at
head of Optional Queue

Mandatory
Replacement

LD/ST at head of Mandatory queue for
which no cache block is available

address of victim block for LD/ST
at head of Mandatory queue

Optional
Replacement

Read-Write Prefetch at head of Optional
queuefor whichnocacheblock is available

address of victim block for
Prefetch at head of Optional queue

Own GETS Occurs when we observe our own GETS
request in the global order

address of transaction at head of
incoming address queue

Own GETX Occurs when we observe our own GETX
request in the global order

same as above

Own PUTX Occurs when we observe our own PUTX
request in the global order

same as above

Other GETS Occurs when we observe a GETS request
from another processor

same as above

Other GETX Occurs when we observe a GETX request
from another processor

same as above

Other PUTX Occurs when we observe a PUTX request
from another processor

same as above

Data Data for this block from the data network address of data message at head of
incoming data queue

10

higher throughputof addresstransactions,thus enablinglarger systemsthan are possiblewith broadcast

snooping.

2.2.1 System Model and Assumptions

Multicast snooping,asdescribedby Bilir et al. [5], incorporatesfeaturesof both broadcastsnoopingand

directoryprotocols.It differsfrom broadcastsnoopingin thatcoherencerequestsusea totally orderedmulti-

castaddressnetwork insteadof a broadcastnetwork. Multicastmasksarepredictedby processors,andthey

mustalwaysincludetheprocessoritself andthedirectoryfor this block (but not any otherdirectories),yet

TABLE 4. Broadcast Snooping Cache Controller Actions

Action Description

a Allocate TBE with Address=B

c Set cache tag equal to tag of block B.

d Deallocate TBE.

f Issue GETS: insert message in outgoing Address queue with Type=GETS, Address=B, Sender=N.

g Issue GETX:insert message in outgoing Address queue with Type=GETX, Address=B, Sender=N

h ServiceLD/ST (acachehit) from thecacheand(if aLD) enqueuethedataon theLD/ST dataqueue.

i Pop incoming address queue.

j Pop incoming data queue.

k Pop mandatory queue.

l Pop optional queue.

m Send data from TBE to memory.

n Send data from cache to memory.

p Issue PUTX: insert message in outgoing Address queue with Type=PUTX, Address=B, Sender=N

q Copy data from cache to TBE.

r Send data from the cache to the requestor

s Save data in data field of TBE.

u Service LD from TBE, pop mandatory queue, and enqueue the data on the LD/ST data queue if the
LD at the head of the Mandatory queue is for this block.

v Service LD/ST from TBE, pop mandatory queue, and (if a LD) enqueue the data on the LD/ST data
queue if the LD/ST at the head of the Mandatory queue is for this block.

w Write data from data field of TBE into cache

y Send data from the TBE to the requestor.

z Cannot be handled right now.

11

they areallowedto beincorrect.A GETSmaskis incorrectif it omitsthecurrentowner, anda GETX mask

is incorrectif it omits thecurrentowneror any of thecurrentsharers.This scenariois resolvedby a simple

directorywhich candetectmaskmispredictionsandretry theserequests(with animprovedmask)on behalf

of the requestors.

Themulticastsnoopingprotocoldescribedherediffersfrom thatspecifiedin Bilir etal. in acoupleof signif-

icantways.First,wespecifyanMSI protocolhereinsteadof anMOSI protocol.Second,wespecifythepro-

tocol here at a lower, more detailedlevel. Third, the directory in this protocol can retry requestswith

incorrect masks on behalf of the original requester.

A multicastsystemis shown in Figure3. The processornodesare structuredlike thosein the broadcast

snoopingprotocol.Insteadof memorynodes,though,themulticastsnoopingprotocolhasdirectorynodes,

which arememorynodeswith extra protocollogic for handlingretries,andthey arealsoshown in Figure3.

In thenext two subsections,we will specifythebehaviors of processoranddirectorycomponentsin anMSI

multicast snooping protocol.

TABLE 5. Broadcast Snooping Cache Controller Transitions
St

at
e

L
oa

d

R
ea

d-
O

nl
y

P
re

fe
tc

h

St
or

e

R
ea

d-
W

ri
te

P
re

fe
tc

h

M
an

da
to

ry
R

ep
la

ce
m

en
t

O
pt

io
na

l
R

ep
la

ce
m

en
t

O
w

n
G

E
T

S

O
w

n
G

E
T

X

O
w

n
P

U
T

X

O
th

er
 G

E
T

S

O
th

er
 G

E
T

X

O
th

er
 P

U
T

X

D
at

a

I caf/I

SAD
caf/IS

AD
cag/I

MAD
cag/I

MAD
i i i

S hk l ag/IM
AD

ag/IM
AD

I I i i/I i

M hk l hk l aqp/M

IA
aqp/M

IA
rni/S ri/I i

ISAD z z z z z z i/ISD i i i sj/ISA

IMAD z z z z z z i/IM D i i i sj/IMA

ISA z z z z z z uwdi/S i i i

IMA z z z z z z vwdi/
M

i i i

MIA z z z z z z mdi/I‡ ymi/IIA yi/II A i

IIA z z z z z z di/I‡ i i i

ISD z z z z z z i z i suwdj/
S

IMD z z z z z z z z i svwdj/
M

‡. Only change the cache state to I if the tag matches.

12

TABLE 6. Broadcast Snooping Memory Controller States

State Description

S Shared or Invalid

M Modified

MSA Modified, have not seen GETS/PUTX, have seen data

MSD Modified, have seen GETS or PUTX, have not seen data

TABLE 7. Broadcast Snooping Memory Controller Events

Event Description Block B

Other Home A requestarrivesfor ablockwhose
home is not at this memory

address of transaction at head of
incoming address queue

GETS A GETS at head of incoming
address queue

same as above

GETX A GETX at head of incoming
address queue

same as above

PUTX (requestor is
owner)

A PUTX from owner at head of
incoming address queue

same as above

PUTX (requestor is
not owner)

A PUTX from non-owner at head
of incoming address queue

same as above

Data Data at head of incoming data
queue

address of message at head of
incoming data queue

TABLE 8. Broadcast Snooping Memory Controller Actions

Action Description

c Set owner equal to directory.

d Send data message to requestor.

j Pop address queue.

k Pop data queue.

m Set owner equal to requestor.

w Write data to memory.

z Delay transactions to this block.

TABLE 9. Broadcast Snooping Memory Controller Transitions

State O
th

er
 H

om
e

G
E

T
S

G
E

T
X

P
U

T
X

(r
eq

ue
st

or
is

 o
w

ne
r)

P
U

T
X

(r
eq

ue
st

or
no

t
ow

ne
r)

D
at

a

S j dj dmj/M j j

M j cj/MSD mj cj/MSD j wk/MSA

MSA j cj/S mj cj/S j

MSD j z z j j wk/S

13

2.2.2 Network Specification

The datanetwork behaves identically to that of the broadcastsnoopingprotocol,but the addressnetwork

behavesslightly differently. As the nameimplies, the addressnetwork usesmulticastinginsteadof broad-

castingand,thus,a transitionof theaddressnetwork consistsof takingamessagefrom theoutgoingaddress

queueof a nodeandplacingit in theincomingaddressqueuesof thenodesspecifiedin themulticastmask,

aswell astherequestingnodeandthememorynodethat is thehomeof theblock beingrequested(if these

nodes are not already part of the mask).

Addressmessagescontainthecoherencerequesttype(GETS,GETX, or PUTX), requestingnodeID, multi-

castmask,blockaddress,anda retrycount.Datamessagescontaintheblockaddress,sendingnodeID, des-

tination nodeID, datamessagetype (DATA or NACK), datablock, andthe retry countof the requestthat

triggered this data message.

2.2.3 CPU Specification

The CPU behaves identically to the CPU in the broadcast snooping protocol.

2.2.4 Cache Controller Specification

Cachecontrollersbehave muchlike they did in thebroadcastsnoopingprotocol,exceptthat they mustdeal

with retriedandnackedrequestsandthey aremoreaggressive in processingincomingrequests.This added

complexity leads to additional states, TBE fields, protocol actions, and protocol transitions.

Thereareadditionalstatesin themulticastprotocolspecifiedheredueto themoreaggressive processingof

incomingrequests.Insteadof buffering incomingrequests(with the ‘z’ action)while in transientstates,a

cachecontrollerin thisprotocolingestssomeof theserequests,therebymoving into new transientstates.An

exampleis thestateIMDI, which occurswhena processorin stateIMD ingestsanincomingGETX request

from anotherprocessorinsteadof buffering it. Thenotationsignifiesthata processorstartedin I, is waiting

Address network

P

Data network

Block
state
info

Memory

Directory

FIFO

Address Network

Point to Point Data Network

Multicast

D D DP P

Directory Node

FIGURE 3. Multicast SnoopingSystem

14

for datato go to M, andwill thengo to I immediately(exceptfor in casesin which forwardprogressissues

requiretheprocessorto performaLD or STbeforerelinquishingthedata,aswill bediscussedbelow). There

arealsothreeadditionalstatesthat arenecessaryto describesituationswherea processorseesa nackto a

request that it has seen yet.

Therearefour additionalfields in the TBE: ForwardProgress,ForwardID, RetryCount,andForwardIDRe-

tryCount.TheForwardProgressbit is setwhena processorseesits own requestthatsatisfiestheheadof the

Mandatoryqueue.Thisflag is usedto determinewhenaprocessormustperformasingleloador storeon the

cacheline beforerelinquishingtheblock.2 For example,whendataarrivesin stateIMDI, aprocessorcanser-

viceaLD or ST to thisblockbeforeforwardingtheblock if andonly if ForwardProgressis set.TheForwar-

dID field recordsthenodeto which a processormustsendtheblock in casessuchasthis. In this example,

ForwardID equalsthe ID of the nodewhoseGETX causedthe processorto go from IMD to IMDI. Retry-

Count recordsthe retry numberof the most recentmessage,andForwardIDRetryCountrecordsthe retry

count associated with the block that will be forwarded to the node specified by ForwardID.

We usethesametable-drivenmethodologyaswasusedto describethebroadcastsnoopingprotocol.Tables

10, 11, 12, and 13 specify the states, events, actions, and transitions, respectively, for processor nodes.

2.2.5 Directory Node Specification

Unlike broadcastsnooping,themulticastsnoopingprotocolrequiresa simplifieddirectoryto handleincor-

rectmasks.A directorynode,in additionto its incomingandoutgoingqueues,maintainsstateinformation

for eachblock of memorythat it controls.Thestateinformationincludestheblock state,theID of thecur-

rentowner (if thestateis M), anda bit vectorthatencodesa supersetof thesharers(if thestateis S). The

possibleblock statesfor a directoryarelistedin Table14.As before,we refer to M, S andI asstablestates

andothersastransientstates.Initially, for all blocks,thestateis setto I, theowneris setto memoryandthe

bit-vector is set to encodean emptysetof sharers.The statenotationis the sameasfor processornodes,

althoughthestateMXA refersto thesituationin whichadirectoryis in M andreceivesdata,but hasnotseen

thecorrespondingcoherencerequestyet andthereforedoesnot know (or care)whetherit is PUTX dataor

data from a processor that is downgrading from M to S in response to another processor’s GETS.

A directorynodeinspectsits incomingqueuesfor theaddressanddatanetworksandremovesthemessageat

the headof a queue(if any). Dependingon the incomingmessageandthe currentblock state,a directory

may inject a new messageinto anoutgoingqueueandmaychangethestateof theblock. For simplicity, a

directory currently delays all requests for a block for which a PUTX or downgrade is outstanding.3

2. Another viable scheme would be to set this bit when a processor observes its own address request and this request
corresponds to the address of the head of the Mandatory queue. It is also legal to set ForwardProgress when a LD/ST
gets to the head of the Mandatory queue while there is an outstanding transaction for which we have not yet seen the
addressrequest.However, sequentialconsistency is notpreservedby aschemewhereForwardProgressis setwhendata
returns for a request and the address of the request matches the address at the head of the Mandatory queue.

15

The directory events,actionsand transitionsare listed in Tables15, 16, and Table17, respectively. The

action‘z’ (“delay transactionsto this block”) relieson the fact thata directorycandelayaddressmessages

for a given block arbitrarily while waiting for a datamessage.Conceptually, we have one directory per

block. Sincethereis morethanoneblock perdirectory, an implementationwould have to beableto delay

only thosetransactionswhich are for the specificblock. Note that consecutive GETStransactionsfor the

same block could be coalesced.

3. This restrictionmaintainstheinvariantthatthereis atmostonedatamessageperblock thatthedirectorycanreceive,
thus eliminating the need for buffers and preserving the sanity of the protocol developers.

TABLE 10. Multicast Snooping Cache Controller States

TBE
State

Cache
State Description

I Invalid

S Shared

M Modified

ISAD busy invalid, issued GETS, have not seen GETS or data yet

IMAD busy invalid, issued GETX, have not seen GETX or data yet

SMAD busy shared, issued GETX, have not seen GETX or data yet

ISA busy invalid, issued GETS, have not seen GETS, have seen data

IMA busy invalid, issued GETX, have not seen GETX, have seen data

SMA busy shared, issued GETX, have not seen GETX, have seen data

ISA* busy invalid, issued GETS, have not seen GETS, have seen nack

IMA* busy invalid, issued GETX, have not seen GETX, have seen nack

SMA* busy shared, issued GETX, have not seen GETX, have seen nack

MIA I modified, issued PUTX, have not seen PUTX yet

IIA I modified, issued PUTX, have not seen PUTX, then saw other GETS or GETX

ISD busy invalid, issued GETS, have seen GETS, have not seen data yet

ISDI busy invalid, issued GETS, have seen GETS, have not seen data, then saw other GETX

IMD busy invalid, issued GETX, have seen GETX, have not seen data yet

IMDS busy invalid, issued GETX, have seen GETX, have not seen data yet, then saw other GETS

IMDI busy invalid, issued GETX, have seen GETX, have not seen data yet, then saw other GETX

IMDSI busy invalid, issuedGETX, haveseenGETX, havenotseendatayet, thensaw otherGETS,
then saw other GETX

SMD busy shared, issued GETX, have seen GETX, have not seen data yet

SMDS busy shared, issued GETX, have seen GETX, have not seen data yet, then saw other GETS

16

3 Verification of Snooping Protocols

In this section,we presenta methodologyfor proving thata specificationis sequentiallyconsistent,andwe

show how this methodologycanbeusedto prove thatour multicastprotocolsatisfiesSC.Our methoduses

anextensionof Lamport’s logical clocks[16] to timestampthe loadandstoreoperationsperformedby the

protocol. Timestampsdeterminehow operationsshouldbe reorderedto witnessSC, as intendedby the

TABLE 11. Multicast Snooping Cache Controller Events

Event Description Block B
Load LD at head of Mandatory queue address of LD at head of Mandatory Queue

Read-Only

Prefetch

Read-Only Prefetch at head of Optional
queue

address of Read-Only Prefetch at head of
Optional Queue

Store ST at head of Mandatory queue address of ST at head of Mandatory Queue

Read-Write
Prefetch

Read-Write Prefetch at head of Optional
queue

address of Read-Write Prefetch at head of
Optional Queue

Mandatory
Replacement

LD/ST at head of Mandatory queue for
which no cache block is available

addressof victim blockfor LD/ST atheadof
Mandatory queue

Optional
Replacement

Read-Write Prefetch at head of Optional
queue for which no cache block is available

address of victim block for Prefetch at head
of Optional queue

Own GETS Occurs when we observe our own GETS
request in the global order

address of transaction at head of incoming
address queue

Own GETX Occurs when we observe our own GETX
request in the global order

same as above

Own GETS

(mismatch)

Occurs when we observe our own GETS
request in the global order, but the Retry-
Count of the GETS does not match Retry-
Count of the TBE

same as above

Own GETX

(mismatch)

Occurs when we observe our own GETX
request in the global order, but the Retry-
Count of the GETS does not match Retry-
Count of the TBE

same as above

Own PUTX Occurs when we observe our own PUTX
request in the global order

same as above

Other GETS Occurs when we observe a GETS request
from another processor

same as above

Other GETX Occurs when we observe a GETX request
from another processor

same as above

Other PUTX Occurs when we observe a PUTX request
from another processor

same as above

Data Data for this block arrives addressof messageatheadof incomingdata
queue

Data

(mismatch)

Data for this block arrives, but the Retry-
Count of the data message does not match
RetryCount of the TBE

addressof messageatheadof incomingdata
queue

17

TABLE 12. Multicast Snooping Cache Controller Actions

Action Description

a Allocate TBE with Address=B, ForwardID=null, RetryCount=zero, ForwardIDRetryCount=zero, For-
wardProgress bit=unset.

b Set ForwardProgress bit if request at head of address queue satisfies request at head of Mandatory queue.

c Set cache tag equal to tag of block B.

d Deallocate TBE.

e Record ID of requestor in ForwardID and record retry number of transaction in ForwardIDRetryCount.

f IssueGETS:insertmessagein outgoingAddressqueuewith Type=GETS,Address=B,Sender=N,Retry-
Count=zero.

g Issue GETX: insert message in outgoing Address queue with Type=GETX, Address=B, Sender=N,
RetryCount=zero.

h Service load/store (a cache hit) from the cache and (if a LD) enqueue the data on the LD/ST data queue.

i Pop incoming address queue.

j Pop incoming data queue.

k Pop mandatory queue.

l Pop optional queue.

m Send data from TBE to memory.

n Send data from cache to memory.

o Send data and ForwardIDRetryCount from the TBE to the processor indicated by ForwardID.

p Issue PUTX: insert message in outgoing Address queue with Type=PUTX, Address=B, Sender=N.

q Copy data from cache to TBE.

r Send data from the cache to the requestor

s Save data in data field of TBE.

t Copy retry field from message at head of incoming Data queue to Retry field in TBE, set ForwardID =
null, and set ForwardIDRetryCount=zero.

u ServiceLD from TBE, popmandatoryqueue,andenqueuethedataontheLD/ST dataqueueif theLD at
the head of the mandatory queue is for this block.

v Treat as either h or z (optional cache hit). If it is a cache hit, then pop the mandatory queue.

w Write data from the TBE into the cache.

x If (and only if) ForwardProgress bit is set, service LD from TBE, pop mandatory queue,and enqueue the
data on the LD/ST data queue.

y Send data from the TBE to the requestor.

z Cannotbehandledright now. Eitherwait or discardrequest(candiscardif this requestis in theOptional
queue).

α Copy retryfield from messageatheadof incomingaddressqueueto Retryfield in TBE, setForwardID=
null, and set ForwardIDRetryCount=zero.

γ Service LD/ST from TBE, pop mandatory queue, and (if a LD) enqueue the data on the LD/ST data
queue if the LD/ST at the head of the mandatory queue is for this block. (If ST, store data to TBE).

λ Optionally service LD/ST from TBE.

δ If (andonly if) ForwardProgressbit is set,serviceLD/ST from TBE, popmandatoryqueue,and(if aLD)
enqueue the data on the LD/ST data queue.

18

TABLE 13. Multicast Snooping Cache Controller Transitions

St
at

e

L
oa

d

re
ad

-o
nl

y
pr

ef
et

ch

St
or

e

re
ad

-w
ri

te
 p

re
fe

tc
h

M
an

da
to

ry
 R

ep
la

ce
m

en
t

O
pt

io
na

l R
ep

la
ce

m
en

t

O
w

n
G

E
T

S

O
w

n
G

E
T

X

O
w

n
G

E
T

S
(m

is
m

at
ch

)

O
w

n
G

E
T

X
 (

m
is

m
at

ch
)

O
w

n
P

U
T

X

O
th

er
 G

E
T

S

O
th

er
 G

E
T

X

O
th

er
 P

U
T

X

D
at

a

D
at

a
(m

is
m

at
ch

)

na
ck

na
ck

 (
m

is
m

at
ch

)

I caf/

ISAD
caf/

ISAD
cag/

IMAD
cag/

IMAD
i i i

S hk l ag/

SMAD
ag/

SMAD
I I i i/I i

M hk l hk l aqp/
MIA

aqp/
MIA

rni/S ri/I i

ISAD z l z z z z bi/

ISD
i i i sj/

ISA
stj/

ISA
tj/

ISA*
tj/

ISA*

IMAD z l z l z z bi/

IMD
i i i sj/

IMA
stj/

IMA
tj/

IMA*
tj/

IMA*

SMAD v l z l z z bi/

SMD
i i/

IMAD
i sj/

SMA
stj/

SMA
tj/

SMA*
tj/

SMA*

ISA* z l z z z z di/I i i i i

IMA* z l z l z z di/I i i i i

SMA* v l z l z z di/S i i i/IM A* i

ISA z l z z z z uwdi/
S

i i i i

IMA z l z l z z γwdi/
M

i i i i

SMA v l z l z z γwdi/
M

i i i/IM A i

MIA λ z λ z z z mdi/I‡ ymi/II
A

yi/II A i

IIA z z z z z z di/I‡ i i i

ISD z l z z z z αi i i/ISDI i suwdj/
S

stj/ISA dj/I tj

ISDI z z z z z z αi/ISD i i i sxdj/I stj/ISA dj/I tj

IMD z l z l z z αi ei/

IMDS

ei/

IMDI

i sγwdj/
M

stj/

IMA
dj/I tj

IMDS z l z z z z αi/IM D i i/IM D

SI
i sδom-

wdj/S
stj/

IMA
dj/I tj

IMDI z z z z z z αi/IM D i i i sδodj/
I

stj/

IMA
dj/I tj

IMDSI z z z z z z αi/IM D i i i sδomd
j/I

stj/

IMA
dj/I tj

SMD z l z l z z αi ei/

SMDS

ei/

IMDI

i sγwdj/
M

stj/

SMA
dj/S tj

SMDS z l z z z z αi/SMD i i/

IMDSI

i sγom-
wdj/S

stj/

SMA
dj/S tj

‡: Only change the state to I if the tag matches.

19

designerof theprotocol.Logicalclocksandtheassociatedtimestampingactionsareaconceptual augmenta-

tion of theprotocolandarespecifiedusingthesametable-basedtransitiontablesastheprotocolitself. We

note that the set of all possible operation traces of the protocol equals that of the augmented protocol.

Theprocessof developinga timestampingschemeis a valuabledebuggingtool in its own right. For exam-

ple, an early implementationof the multicastprotocoldid not includea ForwardProgressbit in the TBE,

and,uponreceiving thedatafor a GETX requestwhenin stateIMDI, alwayssatisfiedanOPat theheadof

the mandatoryqueuebeforeforwardingthe data.Attemptsto timestampOP reveal the needfor a forward

TABLE 14. Multicast Snooping Memory Controller States

State Description

I Invalid - all processors are Invalid

S Shared - at least one processor is Shared

M Modified - one processor is Modified and the rest are Invalid

MXA Modified, have not seen GETS/PUTX, have seen data

MSD Modified, have seen GETS, have not seen data

MID Modified, have seen PUTX, have not seen data

TABLE 15. Multicast Snooping Memory Controller Events

Event Description Block B
GETS GETS with successful mask at head of

incoming address queue
address of transaction at head
of incoming address queue

GETX GETX with successful mask at head of
incoming address queue

same as above

GETS-RETRY GETS with unsuccessful mask at head of
incoming queue. Room in outgoing
address queue for a retry.

same as above

GETS-NACK GETS with unsuccessful mask at head of
incoming queue. No room in outgoing
address queue for a retry.

same as above

GETX-RETRY GETX with unsuccessfulmaskatheadof
incoming queue. Room in outgoing
address queue for a retry.

same as above

GETX-NACK GETX with unsuccessfulmaskatheadof
incoming queue. No room in outgoing
address queue for a retry.

same as above

PUTX (requestor is
owner)

PUTX from owner at head of incoming
address queue.

same as above

PUTX (requestor is not
owner)

PUTX from non-owner at head of incom-
ing address queue.

same as above

Data Data message at head of incoming data
queue

address of message at head of
incoming data queue

20

progressbit, roughly to ensurethatOPcanindeedbe timestampedso that it appearsto occurjust after the

(“earlier”) time of the GETX, and that this OP’s logical timestamp also respects program order.

In brief, our methodology for proving sequential consistency consists of the following steps.

• Augmentthesystemwith logical clocksandwith associatedactionsthatassigntimestampsto LD and

ST operations.The logical clocks arepurely conceptualdevices introducedfor verification purposes

and are never implemented in hardware

TABLE 16. Multicast Snooping Memory Controller Actions

Action Description

c Clear set of sharers.

d Send data message to requestor with RetryCount equal to RetryCount of request.

j Pop address queue.

k Pop data queue.

m Set owner equal to requestor.

n Send nack to requestor with RetryCount equal to RetryCount of request.

q Add owner to set of sharers.

r Retry by re-issuing the request. Before re-issuing, the directory improves the multicast
maskandincrementstheretryfield. If thetransactionhasreachedthemaximumnumberof
retries, the multicast mask is set to the broadcast mask.

s Add requestor to set of sharers.

w Write data to memory.

x Set owner equal to directory.

z Delay transactions to this block.

TABLE 17. Multicast Snooping Memory Controller Transitions

St
at

e

G
E

T
S

G
E

T
X

G
E

T
S

-
R

E
T

R
Y

(U
ns

uc
ce

ss
fu

l m
as

k)

G
E

T
S

-
N

A
C

K
(u

ns
uc

ce
ss

fu
l m

as
k)

G
E

T
X

 -
 R

E
T

R
Y

(u
ns

uc
ce

ss
fu

l m
as

k)

G
E

T
X

 -
 N

A
C

K
(u

ns
uc

ce
ss

fu
l m

as
k)

P
U

T
X

(r
eq

ue
st

or
 is

 o
w

ne
r)

P
U

T
X

(r
eq

ue
st

or
 n

ot
 o

w
ne

r)

D
at

a

I dsj/S dmj/M j

S dsj cdmj/M rj nj j

M qsxj/MSD mj rj nj rj nj xj/MI D j wk/MXA

MXA qsxj/S mj rj nj rj nj xj/I j

MSD z z rj nj j wk/S

MID z z j wk/I

21

• Associatea global historywith any executionof theaugmentedprotocol. Roughly, thehistoryincludes

theconfiguration at eachnodeof thesystem(states,TBEs,cachecontents,logical clocks,andqueues),

the totally orderedsequenceof transactionsdeliveredby thenetwork, andthememoryoperationsser-

viced so far, in program order, along with their logical timestamps.

• Using invariants,definethe notion of a legal global history. The invariantsare quite intuitive when

expressedusinglogical timestamps.It follows immediatelyfrom thedefinitionof a legal globalhistory

that the corresponding execution is sequentially consistent.

• Finally, provethattheinitial historyof thesystemis legal, thateachtransitionof theprotocolmapslegal

globalhistoriesto legal globalhistories,andthattheentrieslabelled“impossible”in theprotocolspeci-

ficationtablesareindeedimpossible.It thenfollows by inductionthat theprotocolis sequentiallycon-

sistent.

Thefirst stepabove,thatof augmentingthesystemwith logicalclocks,canbedonehandin handwith devel-

opmentof theprotocol.Thus,it is, on its own, avaluabledebuggingtool. Thesecondstepis straightforward.

It is alsostraightforwardto selectacoresetof invariantsin thethird stepthatarestrongenoughto guarantee

that theexecutioncorrespondingto any legal globalhistory is sequentiallyconsistent.Thefinal stepof the

proof methodologyabove requiresa proof for every transitionof theprotocolandevery invariant,andmay

necessitatetheadditionof furtherinvariantsto thedefinitionof legal. This stepof theproof,while not diffi-

cult, is certainly tedious.

In therestof thissection,wedescribethefirst threestepsof thisprocessin moredetail,namelyhow themul-

ticastprotocolis augmentedwith logical clocks,andwhat is a globalhistoryanda legal globalhistory. We

include examples of the cases covered in the final proof step in Appendix A.

3.1 Augmenting the System with Logical Clocks

In this section,we shalldescribehow we augmentthesystemspecifiedearlierwith logical clocksandwith

actionsthatincrementclocksandtimestampoperationsanddata.Thesetimestampswill make futuredefini-

tions (of global statesand legal global states)simpler and more intuitive. Theseaugmentationsdo not

change the behavior of the system as originally specified.

3.1.1 The Augmented System

The system is augmented with the following counters, all of which are initialized to zero:

• One counter (global pulse number) associated with the multicast address network.

• Two counters (global and local clocks) associated with each processor node of the system.

• One counter (pulse number) added to each data field and to each ForwardID field of each TBE.

• One counter (pulse number) field added to each data message.

• One counter (global clock) associated with each directory node of the system.

22

3.1.2 Behavior of the Augmented System

In theaugmentedsystem,theclocksgetupdatedandtimestamps(or pulses)areassignedto operationsand

data upon transitions of the protocol according to the following rules.

Network: Eachnew addresstransactionthatis appendedto thetotalorderof addresstransactionsby thenet-

work causesthe global pulsenumberto incrementby 1. The new valueof the pulsenumberis associated

with the new transaction.

Processor:Tables18 and19 describehow theglobalandlocal clocksareupdated.TheTBE counteris used

to recordthetimestampof a requestthatcannotbesatisfieduntil thedataarrives.Whenthedataarrives,the

owner sends the data with the timestamp that was saved in the TBE.

Directory:Briefly, uponhandlingany transaction,thedirectoryupdatesits clock to equaltheglobalpulseof

that transaction. The pulse attached to any data message is set to be the value of the directory’s clock.

3.2 Global Histories

Theglobalhistoryassociatedwith anexecutionof theprotocolis a 3-tuple<TransSeq,Config,Ops>. Trans-

Seq records information on the sequence of transactions requested to date: the type of transaction, requester,

address,mask,retry-number, pulse(possiblyundefined),andstatus(successful,unsuccessful,nack,or unde-

termined).Config recordsthe configurationof the nodes:stateper block, cachecontents,queuecontents,

TBEs, and logical clock values.Ops recordspropertiesof all operationsgeneratedby the CPUsto date:

operations along with address, timestamp (possibly undefined), value, and rank in program order.

TABLE 18. Processor clock actions

Action Description

g Set global clock equal to pulse of transaction being handled, and set local clock to zero

h Increment local clock. The timestamp of the LD/ST is set equal to the associated global
and local clock values.

i Set TBE ForwardID pulse equal to transaction pulse.

k Optionally treat as h.

o Set data message pulse equal to TBE ForwardID pulse.

t Set TBE data pulse equal to pulse of incoming data message.

u If first Op in Mandatory queue is a LD for this block, then increment local clock. The
timestamp of the LD/ST is set equal to the associated global and local clock values.

v If first Opin Mandatoryqueueis aLD/ST for thisblock,thenincrementlocalclock.The
timestamp of the LD/ST is set equal to the associated global and local clock values.

x If ForwardProgress bit is set (i.e., head of Mandatory Queue is a LD or this block), then
no clock update, set global timestamp of LD equal to pulse of incoming data message,
and set local clock value equal to 1.

y Set data message pulse equal to transaction pulse.

z Same as x, but allow a LD or ST for this block.

23

Theglobalhistoryis definedinductively on thesequenceof transitionsin theexecution.In theinitial global

history, Trans-Seqand Ops are empty. In Config, all processorsare in stateI for all blocks,have empty

queues,no TBEsandclocksinitialized to zero.For all blocks,thedirectoryis in stateI, theowners is setto

thedirectory, andthe list of sharersis empty. All incomingqueuesareempty. Uponeachtransition,Trans-

Seq, Ops, and Config are updated in a manner consistent with according to the actions of that transition.

TABLE 19. Processor clock updates
C

ur
re

nt
St

at
e

Processor/Cache Request See Own See Other See Own

Retry
Match

Retry
Mismatch DATA NACK

L
D

re
ad

-o
nl

y
pr

ef
et

ch

ST re
ad

-w
ri

te
 p

re
fe

tc
h

M
an

da
to

ry
 R

ep
la

ce
m

en
t

O
pt

io
na

l R
ep

la
ce

m
en

t

G
E

T
S

G
E

T
X

G
E

T
S

G
E

T
X

P
U

T
X

G
E

T
S

G
E

T
X

R
et

ry
M

at
ch

R
et

ry
M

is
m

at
ch

R
et

ry
M

at
ch

R
et

ry
M

is
m

at
ch

I g g

S h g g

M h h gy gy

ISAD g g g t t

IMAD g g g t t

SMAD k g g g t t

ISA* g g g g

IMA* g g g g

SMA* k g g g g

ISA gu g g g

IMA gv g g g

SMA k gv g g g

MIA k k gy gy gy

IIA gy g g

ISD g g g ht t

ISDI g g g xt t

IMD g gi gi ht t

IMDS g g g zot t

IMDI g g g zot t

IMDSI g g g zot t

SMD k g gi gi ht t

SMDS k g g g zot t

24

3.3 Legal Global Configurations and Legal Global Histories

Thereareseveral requirementsfor a globalhistory<TransSeq,Config,Ops> to belegal. Briefly, theseareas

follows.Thefirst requirementis sufficient to imply sequentialconsistency. Theremainingfour requirements

supply additional invariants that are useful in building up to the proof that the first requirement holds.

• Ops is legal with respect to program order. That is, the following should hold:

3.3.1 Ops respects program order. That is, for any two operations O1 and O2, if O1 has a smaller
timestamp than O2 in Ops, then O1 must also appear before O2 in program order.

3.3.2 Every LD returns the value of the most recent ST to the same address in timestamp order.

• TransSeqis legal. To describethetypeof constraintsthatTransSeqmustsatisfy, we introducethenotion

of A-statevectors.TheA-statevectorcorrespondingto TransSeqfor a givenblock B records,for each

processorN, whetherTransSeqconfersShared(S),Modified (M), or no (I) accessto blockB to proces-

sor N. For example,in a systemwith threeprocessors,if TransSeqconsistsof a successfulGETSto

block B by processor1, followedby anunsuccessfulGETX to block B by processor2, followedby a

successfulGETSto block B by processor3, thenthecorrespondingA-statefor block B is (S,I,S).The

constraintson TransSeqrequire,for example,that a GETX on block B shouldnot be successfulif its

maskdoesnot includeall processorsthat,uponcompletionof the transactionjust prior to the GETX,

mayhave Sharedor Modified accessto B. Thatis, if TransSeqconsistof TransSeq’followedby GETX

on block B andA is the A-statefor block B correspondingto TransSeq’, thenthe maskof the GETX

shouldcontainall processorswhoseentriesin A arenot equalto I. The precisedefinition of a legal

transaction sequence is included in Appendix A.

• Ops is legal with respectto Trans-Seq. Intuitively, for all operationsop in Ops, if op is performedby

processorN atglobaltimestampt, thentheA-statefor processorN at logical timet shouldbeeitherSor

M and should be M ifop is a ST.

• Configis legal with respectto TransSeq. This involvesseveralconstraints,sincetherearemany compo-

nentsto Config. For example,if processorN is in stateISAD for block B, thena GETSfor block B,

requested by N, with timestamp greater than that of N (or undefined) should be inTransSeq.

• Config is legal with respect toOps. That is, for all blocks B and nodes N, the following should hold:

3.3.3 If N is a processor and its state for block B is one of S, M, MIA, SMAD, or SMA, then the
value of block B in N’s cache equals that of the most recent ST inOps, relative to N’s clock. By
“most recent ST relative to N’s clock” we mean a ST whose timestamp is less then or equal to
N’s clock.

3.3.4 If N is a processor and block B is in one of N’s TBEs, then its value equals that of the most
recent ST inOps, relative to p.0.0, where p is the pulse in the data field of the TBE.

3.3.5 If datafor blockB is in N’s incomingdataqueue,its valueequalsthemostrecentST in Ops
(relative to the data’s timestamp, not N’s current time).

3.3.6 If N is the directory of block B, then for each block B for which N is the owner, its value

25

equals that of the most recent ST inOps (relative to N’s clock).

3.4 Properties of Legal Global Histories

It is not hardto show that theglobalhistoryof thesystemis initially legal. Themaintaskof theproof is to

show the following:

Theorem 1: Each protocol transition takes the system from a legal global history to a legal global history.

To illustratehow Theorem1 is proved,we includein AppendixA the proof of why the transitionat each

entry of Table13 (cachecontroller transitions)mapsa legal global history, <TransSeq,Ops,Config>,to a

new global history, <TransSeq’,Ops’,Config’>in whichTransSeq’ is legal.

4 Related Work

We focuson papersthatspecifyandprove a completeprotocolcorrect,ratherthanon efforts that focuson

describingmany alternativeprotocolsandconsistency models,suchas[1, 10]. Thereis a largebodyof liter-

atureon the subjectof formal protocolverification4 which we have classifiedinto a taxonomyalongtwo

independentaxes:automationandcompleteness[23]. Wedistinguishverificationmethodsbasedonthelevel

of automationthey support:manual,semi-automatedor automated.Manualmethodsinvolve humanswho

readthespecificationandconstructtheproofs.Semi-automatedmethodsinvolve somecomputerprograms

(amodelcheckeror theoremprover)whichareguidedby humanswhounderstandthespecificationandpro-

vide the programswith the invariantsor lemmasto prove. Automatedmethodstake the humanout of the

loopandinvolveacomputerprogramthatreadsaspecificationandproducesacorrectnessproof completely

automatically. Wealsodistinguishtechniquesthatarecomplete(proof thatasystemimplementsaparticular

consistency model)from thosethatareincomplete(proofof coherenceor selectedinvariants).Table20pro-

vides a summary of our taxonomy. We discuss each column of the table separately below.

TABLE 20. Classification of Related Work

Manual Semi-automated Automated

Complete
method

lazy caching[2]
DASH memory model [12]
Lamport Clocks [25, 21, 6, 15],
Lamport Clocks (this paper),
term rewriting [24]

Lazy & snoopy
caching[14]

Incomplete
method

RMO testing[19],
Origin2000 coherence[8],
S3.mp coherence[22],
FLASH coherence [20],
Alpha 21264/21364 [3],
HP Runway testing[11, 18]

4. Formalmethodsinvolveconstructionof rigorousmathematicalproofsof correctnesswhile informalmethodsinclude
suchtechniquesassimulationandrandomtestingwhichdonotguaranteecorrectness.Weonly considerformalmethods
in this review.

26

Manualtechniques:Lazycaching[2] wasoneof theearliestexamplesof a formalspecificationandverifica-

tion of a protocol(lazy caching)that implementedsequentialconsistency. TheauthorsuseI/O automataas

their formalsystemmodelsandprovideamanualproof thata lazycachingsystemimplementsSC.Theiruse

of historyvariablesin theproof is similar to themannerin which we useLamportClock timestampsin our

proofs. Gibbonset al. [12] provide a framework for verifying that sharedmemory systemsimplement

relaxedmemorymodels.Themethodinvolvesspecifyingboththesystemto beverifiedaswell asanopera-

tional definition of a memorymodelas I/O automataandthenproving that the systemautomatonimple-

mentsthe modelautomaton.As an example,they provide a specificationof the StanfordDASH memory

systemand manuallyprove that it implementsthe ReleaseConsistency memorymodel.Our table-based

specification methodology is complementary in that it could also be used to describe I/O automata.

Our previouspapers[25, 21, 6, 15] specifiedvarioussharedmemorysystems(directoryandbusprotocols)

atahigh level, andemployedmanualproofsusingourLamportClockstechniqueto show thatthesesystems

implementedvariousmemorymodels(SC,TSO,Alpha).This paperis our latesteffort which demonstrates

our techniqueappliedto moredetailedtable-basedspecificationsof snoopingprotocols.ShenandArvind

[24] proposeusing term rewriting systems(TRSs)to both specify and verify memorysystemprotocols.

Their verificationtechniqueinvolvesshowingthat thesystemunderconsiderationandtheoperationaldefi-

nition of amemorymodel,whenexpressedasTRSs,cansimulateeachother.Thisproof techniqueis similar

to the I/O automataapproachusedby Gibbonset al. [12]. Both TRSsand our table-basedspecification

methodcanbeusedin a modularandflexible fashion.A drawbackof TRSsis thattheylack thevisualclar-

ity of our table-basedspecification.Althoughtheircurrentproofsaremanual,theymentionthepossibilityof

using a model checker to automate tedious parts of the proof.

Semi-automatedtechniques:Park andDill [19] provide anexecutablespecificationof theSunRMO mem-

ory modelwritten in the languageof theMurϕ modelchecker. This language,which is similar to a typical

imperative programminglanguage,is unambiguousbut not necessarilycompact.They usethis specification

to checkthecorrectnessof smallsynchronizationroutines.EirikssonandMcMillan [8] describeamethodol-

ogy which integratesdesignandverificationwherecommonstatemachinetablesdrive a modelchecker and

generatorsof simulatorsanddocumentation.Theprotocolspecificationtablesthey describeweredesigned

to beconsumedby automatedgeneratorsratherthanby humans,andthey do not describetheformatof the

text specificationsgeneratedfrom thesetables.They usetheSMV modelchecker (which acceptsspecifica-

tions in temporallogic) to prove the coherenceof the protocolusedin the SGI Origin 2000.However, the

systemverifiedhadonly onecacheblock (which is sufficient to provecoherence,but notconsistency). Pong

et al. [22] verify thememorysystemof theSunS3.mpmultiprocessorusingtheMurϕ andSSM(Symbolic

StateModel)modelcheckers,but again theverifiedsystemhadonly onecacheblockandthuscannotverify

whetherthesystemsatisfiesa memorymodel.Park andDill [20] expressboththedefinitionof thememory

modelandthesystembeingverified in thesamespecificationlanguageandthenuse“aggregation” to map

thesystemspecificationto themodelspecification(similar to theuseof TRSsby ShenandArvind[24] and

27

I/O automataby Gibbonset al. [12]). As anexample,they specifytheStanfordFLASH protocolin thelan-

guageof thePVStheoremprover (the languageis a typedhigh-orderlogic) andusethis aggregation tech-

niqueto prove thatthe“Delayed”modeof theFLASH memorysystemis sequentiallyconsistent.Akhiani et

al. [3] summarizetheirexperiencewith usingTLA+ (a form of temporallogic) andacombinationof manual

proofsanda TLA+ modelchecker (TLC) to specifyandverify theCompaqAlpha 21264and21364mem-

ory systemprotocols.Althoughthey did find a bug thatwould not have beencaughtby simulationor model

checking,theirmanualproofswerequitelargeandonly asmallportioncouldbefinishedevenwith 4 people

and7 person-monthsof effort. TheTLA+ specificationsarecompleteandformal, but they arebothnearly

two thousandlines long. Nalumasuet al. [11, 18] proposean extensionof Collier’s ArchTestsuitewhich

providesacollectionof programsthattestcertainpropertiesof amemorymodel.Theirextensioncreatesthe

effect of having infinitely long testprograms(andthuscheckingall possibleinterleavingsof testprograms)

by abstractingthetestprogramsinto non-deterministicfinite automatawhich drive formal specificationsof

thesystembeingverified.Both theautomataandtheimplementationswerespecifiedin Verilog andtheVIS

symbolicmodelcheckerwasusedto verify thatvariousinvariantsaresatisfiedby thesystemwhendrivenby

theseautomata.Thetechniqueis usefulin practiceandhasbeenappliedto commercialsystemssuchasthe

HPPA-8000Runwaybusprotocol.However, it is incompletein thattheinvariantsbeingtesteddonot imply

SC (they are necessary, but not sufficient).

Automatedtechniques:Henzingeret al. [14] provide completelyautomatedproofs of lazy and a certain

snoopy cachecoherenceprotocolusingtheMOCHA modelchecker. Their protocolspecifications(with the

systembeingexpressedin a languagesimilar to a typical imperative programminglanguageandtheproof

requirementsexpressedin temporallogic) areaugmentedwith a specificationof a “finite observer” which

canreorderprotocol transactionsin orderto producea witnessorderingwhich satisfiesthe definition of a

memorymodel.They provide suchobserversfor the two protocolsthey specifyin thepaper. However, the

generalproblemof verifying sequentialconsistency is undecidableandsuchfinite observersdonotexist for

theprotocolswe specifyin this paperor in theprotocolsusedin modernhigh-performanceshared-memory

multiprocessors.

To thebestof our knowledge,thereareno publishedexamplesof a completelyautomatedproof of correct-

ness of a system specified at a low level of abstraction.

5 Conclusions

In this paper, we have developeda specificationmethodologythat documentsandspecifiesa cachecoher-

enceprotocolin eighttables:thestates,events,actions,andtransitionsof thecacheandmemorycontrollers.

Wehaveusedthismethodologyto specifyadetailed,low-level three-statebroadcastsnoopingprotocolwith

anunordereddatanetwork andanorderedaddressnetwork which allows arbitraryskew. We have alsopre-

senteda detailed,low-level specificationof theMulticastSnoopingprotocol[5], and,in doingso,we have

shown theutility of thetable-basedspecificationmethodology. Lastly, wehavedemonstrateda techniquefor

28

verificationof theMulticastSnoopingprotocol,throughthesketchof a manualproof that thespecification

satisfies a sequentially consistent memory model.

Acknowledgments

This work is supportedin part by the National ScienceFoundationwith grantsEIA-9971256,MIPS-

9625558,MIP-9225097,CCR 9257241,andCDA-9623632,a WisconsinRomnesFellowship, anddona-

tionsfrom SunMicrosystemsandIntel Corporation.Membersof theWisconsinMultif acetProjectcontrib-

uted significantly to improving the protocolsand protocol specificationmodel presentedin this paper,

especially Anastassia Ailamaki, Ross Dickson, Charles Fischer, and Carl Mauer.

References

[1] S.V. Adve. DesigningMemoryConsistencyModelsfor Shared-MemoryMultiprocessors. PhD thesis,ComputerSciences
Department, University of Wisconsin–Madison, Nov. 1993.

[2] Y. Afek, G. Brown,andM. Merritt. “Lazy Caching.”ACMTransactionsonProgrammingLanguagesandSystems, 15(1):182–
205, Jan. 1993.

[3] H. Akhiani, D. Doligez,P.Harter,L. Lamport,J.Scheid,M. Tuttle, andY. Yu. “CacheCoherenceVerification with TLA+.”
In J.M. Wing, J.Woodcock,andJ.Davies,editors,FM’99—FormalMethods,VolumeII , volume1709of LectureNotesin
Computer Science, page 1871. Springer, 1999.

[4] J.Archibald and J.-L. Baer. “Cache CoherenceProtocols:EvaluationUsing a MultiprocessorSimulation Model.” ACM
Transactions on Computer Systems, 4(4):273–298, 1986.

[5] E. E.Bilir, R. M. Dickson,Y. Hu,M. Plakal,D. J.Sorin,M. D. Hill, andD. A. Wood.“Multicast Snooping:A NewCoherence
Method Using a Multicast AddressNetwork.” In Proceedingsof the 26th Annual International Symposiumon Computer
Architecture, Atlanta, Georgia, May 1999.

[6] A. E. Condon,M. D. Hill, M. Plakal,andD. J.Sorin.“Using LamportClocksto ReasonAbout RelaxedMemoryModels.” In
Proceedingsof the5thInternationalSymposiumonHigh PerformanceComputerArchitecture, Orlando,Florida,January1999.

[7] D. E. Culler andJ.Singh.Parallel ComputerArchitecture:A Hardware/SoftwareApproach. MorganKaufmannPublishers,
Inc., 1999.

[8] A. T. EirikssonandK. L. McMillan. “Using FormalVerification/AnalysisMethodson theCritical Pathin SystemsDesign:A
CaseStudy.” In Proceedingsof theComputerAidedVerificationConference, Liege,Belgium,1995.AppearsasLNCS 939,
Springer Verlag.

[9] S.J. Frank. “Tightly Coupled Multiprocessor System Speeds Memory-access Times.”Electronics, 57(1):164–169, Jan. 1984.

[10] K. Gharachorloo.Memory ConsistencyModels for Shared-MemoryMultiprocessors. PhD thesis, Computer System
Laboratory, Stanford University, Dec. 1995.

[11] R. Ghughal,A. Mokkedem,R. Nalumasu,and G. Gopalakrishnan.“Using ‘Test Model-Checking’to Verify the Runway-
PA800MemoryModel.” In Proceedingsof theTenthACMSymposiumonParallelAlgorithmsandArchitectures(SPAA), pages
231–239, June 1998.

[12] P.B. Gibbons,M. Merritt, andK. Gharachorloo.“ProvingSequentialConsistencyof High-PerformanceSharedMemories.”In
Symposium on Parallel Algorithms and Architectures, pages 292–303, July 1991.

[13] J.L. Hennessy and D.A. Patterson.Computer Architecture: A Quantitative Approach. Morgan Kaufmann, 1990.

[14] T. A. Henzinger,S.Qadeer,and S.K. Rajamani.“Verifying SequentialConsistencyon Shared-MemoryMultiprocessor
Systems.”Lecture Notes in Computer Science, 1633:301–315, 1999.

[15] M. D. Hill, A. E. Condon,M. Plakal,andD. J. Sorin. “A System-LevelSpecificationFrameworkfor I/O Architectures.”In
Proceedings of the Eleventh ACM Symposium on Parallel Algorithms and Architectures (SPAA), June 1999.

[16] L. Lamport.“Time, ClocksandtheOrderingof Eventsin aDistributedSystem.”Communicationsof theACM, 21(7):558–565,
July 1978.

[17] L. Lamport.“How to Makea MultiprocessorComputerthatCorrectlyExecutesMultiprocessPrograms.”IEEE Transactions
on Computers, C-28(9):690–691, Sept. 1979.

[18] R. Nalumasu,R. Ghughal,A. Mokkedem,andG. Gopalakrishnan.“The ‘Test Model-checking’Approachto theVerification
of Formal Memory Models of Multiprocessors.”In A. J. Hu and M. Y. Vardi, editors,Proceedingsof ComputerAided

29

Verification, 10th International Conference, pages 464–476, June 1998.

[19] S.Park and D. L. Dill. “An ExecutableSpecification,Analyzer and Verifier for RMO (RelaxedMemory Order).” In
Proceedingsof the 7th Annual ACM Symposiumon Parallel Algorithmsand Architectures, pages34–41,SantaBarbara,
California, July 17–19, 1995.

[20] S.ParkandD. L. Dill. “Verification of FLASH CacheCoherenceProtocolby Aggregationof DistributedTransactions.”In
Proceedingsof the8th AnnualACM Symposiumon Parallel AlgorithmsandArchitectures, pages288–296,Padua,Italy, June
24–26, 1996.

[21] M. Plakal,D. J.Sorin,A. E. Condon,andM. D. Hill. “Lamport Clocks:Verifying a DirectoryCache-CoherenceProtocol.”In
Proceedingsof the10thAnnualACMSymposiumonParallel ArchitecturesandAlgorithms, PuertoVallarta,Mexico,June28–
July 2 1998.

[22] F. Pong, M. Browne, A. Nowatzyk, and M. Dubois. “Design Verification of the S3.mp Cache-CoherentShared-Memory
System.”IEEE Transactions on Computers, 47(1):135–140, Jan. 1998.

[23] F. PongandM. Dubois.“Verification Techniquesfor CacheCoherenceProtocols.”ACM ComputingSurveys, 29(1):82–126,
Mar. 1997.

[24] X. ShenandArvind. “Specificationof MemoryModelsandDesignof ProvablyCorrectCacheCoherenceProtocols.”Group
Memo 398, Massachusetts Institute of Technology, June 1997.

[25] D. J. Sorin, M. Plakal, M. D. Hill, and A. E. Condon.“Lamport Clocks: ReasoningAbout Shared-MemoryCorrectness.”
Technical Report CS-TR-1367, University of Wisconsin-Madison, Mar. 1998.

[26] P.SweazeyandA. J.Smith.“A Classof CompatibleCacheConsistencyProtocolsandtheir Supportby theIEEE Futurebus.”
In Proceedings of the 13th Annual International Symposium on Computer Architecture, pages 414–423, June 1986.

[27] D. A. Wood,G. G. Gibson,andR. H. Katz. “Verifying a MultiprocessorCacheControllerUsingRandomCaseGeneration.”
IEEE Design and Test of Computers, 7(4):13–25, Aug. 1990.

Appendix A: Excerpt from Proof of Sequential Consistency

In thisappendix,we includeaprecisedefinitionof a legal transactionsequence,andweprove thatprocessor

transitionsmaplegal historiesto historiesin which thetransactionsequenceis legal. Otherpartsof theproof

can be done in a similar manner.

A.1 Legal Transaction Sequences

Intuitively, the definition of a legal transactionsequencerulesout sequencesthat do not make sense.For

example,a GETX on block B in which themaskdoesnot includeall processorsthat “currently” mayhave

Sharedor Modified accessto B shouldnot be successful.By “currently,” we arereferringto a momentin

whichall transactionsoccurringbeforetheGETX to blockB in thetransactionsequencearecompleted,and

no furthertransactionsareyet handled.We useanA-statevectorto recordthetypeof accesseachprocessor

mayhaveto agivenblockuponcompletionof asequenceof transactions.TheA-statevectorfor blockB has

P elements,eachof which is eitherInvalid, Shared,or Modified. Also, throughouttheappendix,we denote

anentryof thetransactionsequenceasa tuple<Trans,Mask,RetryNum,Pulse,Status>, whereTransis a triple

denotingthe requester, address,and transactiontype (GETX, GETS, or PUTX) and the meaningof the

remaining entries of the tuple should be clear from the description in Section3.2.

Wefirst definethenotionof adeterminedlegal transactionsequenceandits associatedA-state.Here,deter-

minedsimply refersto thefactthattheoutcomesof all transactionsin thesequencehavebeendeterminedto

be success, failure or nack.

• Theemptysequence() is a determinedlegal transactionsequencewith associatedA-statevectorsA =
<I, I, ..., I> for each block.

• If TransSeq denotes a determined legal transaction sequence,then TransSeq’ = (TransSeq,
<Trans,Mask,RetryNum,Pulse,Status>) is alsoa determinedlegal transactionsequenceif the following
conditions are true. In what follows, letTrans be on blockB, and let the requester ofTrans ber.

A.1.1 Status cannot be UNDETERMINED.

A.1.2 If Status= SUCCESS,thenMaskis sufficientwith respectto TransSeq. A maskM is sufficientwith

30

respectto TransSeqif, whenA is theA-statevectorfor blockB associatedwith TransSeq, wehaveMi =
1 for all nodesi with Ai = M or Ai = S.

A.1.3 If RetryNumis 0, thenthemostrecenttuplein TransSeqwith requester= N onblockB (if any) has
status that is either SUCCESS or NACK. If Retry Num is greater than 0 then the most recent tuple in
TransSeqwith requester= N onblockB musthavethesametransactiontypeasTrans, musthavearetry
number that is less thanRetry Num,and must have status =Failure.

TheA-stateassociatedwith TransSeq’for all blocksotherthanblock B is thesameasthatassociatedwith

TransSeq.For block B, the A-stateA’ associatedwith TransSeq’is the sameasA exceptfor the following

changes:

Finally, a transaction sequenceTransSeqis alegal transaction sequence if the following conditions hold:

A.1.4 TransSeqis a concatenation of a determined legal transaction sequence,TransSeqD, with a
sequence of tuples whoseStatus is UNDETERMINED.

A.1.5 Tuples inTransSeq are ordered byPulse, with UNDEFINED pulses occurring in arbitrary order at
the end of the sequence.

A.1.6 Tuples inTransSeq with determinedStatus must also have a definedPulse.

A.1.7 For all N and B there is at most one tuple inTransSeqwith requester=N, address=B, and
Status=UNDETERMINED.

A.1.8 For each tuple T inTransSeq with Status=UNDETERMINED, if theStatus of T is replaced by
FAILURE or NACK and Pulse is set to a defined value, thenTransSeqD, T is a determined legal
transaction sequence.

A.1.9 For each tuple T inTransSeq with Status=UNDETERMINED, if theMask of T is sufficient with
respect toTransSeqD (as defined in condition A.1.2 above), the status of T is replaced by SUCCESS,
and Pulse is set to a defined value, thenTransSeqD, T is a determined legal transaction sequence.

In whatfollows,supposethatadeterminedlegal transactionsequenceof lengthat leastt is fixedandablock

B is fixed.Let A betheA-statefor blockB associatedwith theprefixof this transactionsequenceof lengtht.

Then we say that the A-state of processori at time t isAi and we denote it byAi(t).

A.2 Cache Controller Transitions map legal histories to histories with legal
transaction sequences.

Eachentryof Table22pointsto theproofof why thetransitionat thecorrespondingentryof Table13(cache

controllertransitionspecification),mapsa legal globalhistory, <TransSeq,Ops,Config>,to anew globalhis-

tory, <TransSeq’,Ops’,Config’>in which TransSeq’is legal. As usual,the transitionis doneby nodeN on

block B, and we assume that the logical time of N (inConfig) is t.

a) In thiscase,processorN’sstateis I, S,or M. By constructionof theprotocol,Tables12and13,actions
f, g, or p, a transaction T is issued with TYPE GETS, GETX, or PUTX. By action a, the retry number
must be 0. Therefore,TransSeq’ = TransSeq, T, where T=<<B,TYPE,N>,M,0,UNDEFINED,UNDE-
TERMINED>.

For each condition of the definition of a legal transaction sequence, we list the reasons why TransSeq’
satisfies that condition. Throughout, we denote the determined legal prefix ofTransSeq by TransSeqD;
note that this is also the determined prefix ofTransSeq’.

TABLE 21. Successful transactions

GETS Ar’ = S and for any i with Ai = M, Ai’ = S.

GETX Ar’ = M and fori not equal tor, Ai’ = I.

PUTX Ar’ = I.

31

A.1.4:TransSeq’is aconcatenationof adeterminedlegal transactionsequencewith asequenceof tuples
whose status is UNDETERMINED, sinceTransSeqis such a sequence and since T has UNDETER-
MINED status.

A.1.5: Tuples inTransSeq’ are ordered by pulse, with UNDEFINED pulses occurring in arbitrary order
at the end of the sequence, sinceTransSeqsatisfies this property and T has UNDEFINED pulse.

A.1.6: Tuples inTransSeq’ with determined status must also have a defined pulse, since all tuples of
TransSeq’ with determined status are inTransSeqandTransSeq satisfies A.1.6.

A.1.7: For (node, block) pairs other than (N,B),TransSeq’ has at most one tuplewith requester=node,
address=block, and UNDETERMINED status sinceTransSeqsatisfies this condition and since T has
requester = N and address = B. It remains to show that among the tuples inTransSeq with status =
UNDETERMINED, there are none with both requester = N and address= B. This follows because the
definition of legal configuration (not included in this document) states that, if a processor N at logical
timet is in oneof statesI, S,or M, thenthereis no transactionin TransSeqwith requester= N, address=
B, and pulse either > t or undefined.

TABLE 22. Legality of transition from <Trans,Ops,Config>to <Trans’,Ops’,Config’>, where the
transition is done by processor N at logical time t, with respect to block B.

St
at

e

L
oa

d

re
ad

-o
nl

y
pr

ef
et

ch

St
or

e

re
ad

-w
ri

te
 p

re
fe

tc
h

M
an

da
to

ry

O
pt

io
na

l
R

ep
la

ce
m

en
t

O
w

n
G

E
T

S

O
w

n
G

E
T

X

O
w

n
G

E
T

S
(m

is
m

at
ch

)

O
w

n
G

E
T

X
 (

m
is

m
at

ch
)

O
w

n
P

U
T

X

O
th

er
 G

E
T

S

O
th

er
 G

E
T

X

O
th

er
 P

U
T

X

D
at

a

D
at

a
(m

is
m

at
ch

)

na
ck

na
ck

 (
m

is
m

at
ch

)

I a a a a z z z

S a a a a z z z z z

M z z z z a a z z z

ISAD z z z z z z z z z z z z z z

IMAD z z z z z z z z z z z z z z

SMAD z z z z z z z z z z z z z z

ISA* z z z z z z z z z z z

IMA* z z z z z z z z z z z

SMA* z z z z z z z z z z z

ISA z z z z z z z z z z z

IMA z z z z z z z z z z z

SMA z z z z z z z z z z z

MIA z z z z z z z z z z

IIA z z z z z z z z z z

ISD z z z z z z z z z z z z z z

ISDI z z z z z z z z z z z z z z

IMD z z z z z z z z z z z z z z

IMDS z z z z z z z z z z z z z z

IMDI z z z z z z z z z z z z z z

IMDSI z z z z z z z z z z z z z z

SMD z z z z z z z z z z z z z z

SMDS z z z z z z z z z z z z z z

32

A.1.8:TransSeqsatisfies A.1.8; thus it remains to show thatTransSeqD, <<B,TYPE,N>,M,0,P,FAIL-
URE>is adeterminedlegal transactionsequence.This is truefor thefollowing reasons.First,TransSeqD
is adeterminedlegal transactionsequence,andsoweneedto show thatconditionsA.1.1-A.1.3aresatis-
fied.

- A.1.1: The status of T’’ is not UNDETERMINED since it is FAILURE.

- A.1.2: This does not apply, since the status is FAILURE.

- A.1.3: SinceRetry Num equals 0 it is sufficient to show that the most recent transaction inTransSeqD
with requester = N and address= B has status equal to either SUCCESS orNACK. As in A.1.7 above,
this followsbecausethedefinitionof legal configurationstatesthat,if aprocessorN at logical timet is in
one of states I, S, or M, then there is no transaction inTransSeq with requester = N, address = B, and
pulseeither> t or undefined;moreover, themostrecenttransactionwith requester= N andaddress= B is
eitherSUCCESSor NACK. SinceTransSeqD is asubsequenceof TransSeqof lengthat leastt, thesame
two properties must hold forTransSeqD.

A.1.9:TransSeqsatisfies A.1.9; thus it remains to show thatTransSeqD, <<B,TYPE,N>,M,0,P,SUC-
CESS>is adeterminedlegal transactionsequence,assumingthattheMaskof T is sufficient.First,Trans-
SeqD is adeterminedlegal transactionsequence,andsoweneedto show thatconditionsA.1.1-A.1.3are
satisfied.

- A.1.1: The status of T’’ is not UNDETERMINED since it is SUCCESS.

- A.1.2: The maskM is sufficient by assumption.

- A.1.3: Identical argument as for A.1.8 above.

z) In this case,TransSeq’ = TransSeqandTransSeq is legal. Therefore,TransSeq’is legal.

