To appear in the proceedings of
“Second USENIX Symposium on Microkernels and Other Kernel Architectures”, September 1993.
Reprinted by permission of the USENIX Association.

Kernel Support for the Wisconsin Wind Tunnel*

Steven K. Reinhardt, Babak Falsafi, and David A. Wood

Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton Street
Madison, WI 53706 USA
wwtQcs.wisc.edu

Abstract

This paper describes a kernel interface that provides an untrusted user-level process (an
ezecutive) with protected access to memory management functions, including the ability to
create, manipulate, and execute within subservient contexts (address spaces). Page motion
callbacks not only give the executive limited control over physical memory management,
but also shift certain responsibilities out of the kernel, greatly reducing kernel state and
complexity.

The ezecutive interface was motivated by the requirements of the Wisconsin Wind Tun-
nel (WWT), a system for evaluating cache-coherent shared-memory parallel architectures.
WWT uses the executive interface to implement a fine-grain user-level extension of Li’s
shared virtual memory on a Thinking Machines CM-5, a message-passing multicomputer.
However, the interface is sufficiently general that an executive could act as a multipro-
grammed operating system, exporting an alternative interface to the threads running in its
subservient contexts.

The executive interface is currently implemented as an extension to CMOST, the standard
operating system for the CM-5. In CMOST, policy decisions are made on a central, distinct
control processor (CP) and broadcast to the processing nodes (PNs). The PNs execute a
minimal kernel sufficient only to implement the CP’s policy. While this structure efficiently
supports some parallel application models, the lack of autonomy on the PNs restricts its
generality. Adding the executive interface provides limited autonomy to the PNs, creating
a structure that supports multiple models of application parallelism. This structure, with
autonomy on top of centralization, is in stark contrast to most microkernel-based parallel
operating systems in which the nodes are fundamentally autonomous.

*This work is supported in part by NSF PYI Award CCR-9157366, NSF Grant MIP-9225097, a Wisconsin
Alumni Research Foundation Fellowship, an A.T.&T. Bell Laboratories Ph.D. Fellowship, and donations from
Xerox Corporation, Thinking Machines Corporation, and Digital Equipment Corporation. Our Thinking Machines
CM-5 was purchased through NSF Institutional Infrastructure Grant No. CDA-9024618 with matching funding
from the Univ. of Wisconsin Graduate School.

© 1993 USENIX Association. Permission to copy without fee all or part of this material is granted, provided that
the copies are not made or distributed for commercial advantage, the USENIX Association copyright notice and
the title and date of publication appear, and that notice is given that copying is by permission of the USENIX
Association. To copy or republish otherwise requires specific permission from the USENIX Association.

1 Introduction

This paper describes the kernel interface designed to support the Wisconsin Wind Tunnel
(WWT) [13], a system for parallel simulation of parallel computers. WWT currently runs
on the Thinking Machines CM-5 (a message-passing machine) and simulates cache-coherent
shared-memory multiprocessors. Shared memory applications execute directly on the CM-5
node processors, with WWT simulating references to remote data. Shared memory function-
ality is provided using a fine-grain user-level extension of Li’s shared virtual memory [10], as
described in Section 2.2. WWT uses a separate address space for each simulated (target) node
and services all of its exceptions (e.g., MMU faults) and system call requests (e.g., file I/O).
In order to study machines larger than the host, several target nodes timeshare a single CM-5
node. In many ways, WWT behaves like an operating system for shared-memory applications.
Alternatively, WWT can be thought as providing a virtual machine abstraction—with a shared-
memory MIMD machine atop a message-passing pseudo-SIMD machine—for these applications
8]

WWT requires several unusual features from the underlying operating system. Specifically,
the kernel must allow WWT to:

o Create subservient contexts (address spaces)

e Manipulate page mappings within sub-contexts

e Initiate execution in sub-contexts

e Handle traps generated during execution in sub-contexts
e Manage physical memory tags in sub-contexts'

All of these features must coexist with traditional memory management functions, including
paging and/or swapping.

We have defined and implemented an interface which provides these features and call any
application that makes use of them an executive. While the interface is motivated by our specific
application, it provides any untrusted user-level process with protected access to memory man-
agement functions, including the ability to create, manipulate, and execute within subservient
contexts (address spaces). Page motion callbacks not only give the executive limited control over
physical memory management, but also shift certain responsibilities out of the kernel, greatly
reducing kernel state and complexity.

Because an executive creates contexts and controls them completely, it can act as the op-
erating system for other applications, providing an execution model not available under the
native operating system. For example, an executive can export various thread and memory
abstractions without adding complexity to the kernel itself.

While this flexibility is useful in a uniprocessor context, it is particularly important on the
CM-5, since standard CMOST is a centralized, synchronous operating system, allowing little
autonomy for the node kernels. CMOST’s structure efficiently supports an important class
of parallel applications, i.e. fine-grain data-parallel codes, but cannot take advantage of more
autonomous execution models. By extending CMOST with the executive interface, we provide
a kernel structure that can efficiently support both synchronous and asynchronous applications.

We have effectively extended the CM-5 architecture to support two bits of tag information for each 32-byte
block of physical memory; see Section 2.3.

The combination of CMOST and executive interface results in a unique kernel structure
that provides autonomy on top of synchrony, rather than the more traditional approach of
coordinating fundamentally autonomous nodes. This new kernel structure may prove superior
because centralized control appears to have advantages for supporting fine-grain synchronous
codes and managing global hardware resources, while the executive interface provides flexible
support for other execution models.

The next section provides background on the Thinking Machines CM-5 system, the Wiscon-
sin Wind Tunnel, and our method of synthesizing memory tags on the CM-5. While the interface
is not tied to any of these, this section provides context and motivation for the rest of the paper.
Section 3 defines the interface, consisting of context manipulation calls, page motion callbacks,
and execution management calls. Section 4 describes our implementation of the interface in
CMOST and its performance. Section 5 discusses the implications of this work for the structure
of multiprocessor operating systems. Finally, we discuss related work and our conclusions.

2 Background

2.1 Thinking Machines CM-5 and CMOST

The Thinking Machines CM-5 [16] is a distributed-memory message-passing multiprocessor.
Each processing node consists of a 33 MHz SPARC microprocessor with a cache and memory
management unit, up to 128 MB of memory, a custom network interface chip, and optional
custom vector units. The processing nodes are grouped into partitions of 32 or more processors.
Each partition is managed by a control processor (CP), distinct from the processing nodes (PNs).

The standard operating system for the CM-5 is CMOST. Under CMOST, all policy decisions,
including scheduling, swapping, and memory allocation, are made on the control processor.
The processing nodes execute a minimal microkernel (the PN kernel) which provides the bare
mechanisms required to implement the CP’s policy. Because all processors in the partition
are managed as a synchronous unit, CMOST gives the CM-5 some SIMD-like qualities. For
example, when the CP decides to context switch, all nodes simultaneously switch to the new
context. Similarly, when a new process is created, the CP selects the physical pages which the
process will occupy on the PNs and broadcasts that process’s memory map.

CMOST and the CM-5 are optimized to run data-parallel applications, where all nodes syn-
chronously apply similar operations to a local subset of a global data structure. In particular,
the CM-5 contains a “control network”, distinct from the message-passing network, which pro-
vides hardware support for global operations such as barriers, reductions, and broadcasts [9)].
To efficiently utilize this control network, all nodes in a partition must concurrently execute the
same user process. The centralized CMOST structure automatically satisfies this condition.

2.2 The Wisconsin Wind Tunnel

The Wisconsin Wind Tunnel (WWT) provides a platform for evaluating parallel computer
systems—specifically cache-coherent shared-memory computers—by accurately modeling the
performance of real workloads on proposed hardware [13]. WWT helps computer engineers
evaluate computer architectures much like a wind tunnel helps aeronautical engineers design air-
craft. WWT uses the execution of a parallel shared-memory application to drive a distributed
discrete-event simulation, accurately calculating the execution time of that application on a
modeled hardware system (the target). Events generated by the simulation, such as lock acqui-
sitions and memory reference completions, are used in scheduling the application, guaranteeing

that the application’s execution proceeds exactly as it would on the target system.

We call WWT a wirtual prototype because it uses direct execution to leverage similarities
between the target system and the system on which it executes (the host) [5]. This means that
the target application executes directly on the host hardware as much as possible—for example,
a target floating-point multiply runs as a host floating-point multiply. Software simulation is
required only for those features of the target system not provided by the host.

Because WWT executes on a message-passing machine, the primary feature it must simulate
is the shared memory abstraction. We do this using a fine-grain extension of Li’s shared virtual
memory [10]. Shared virtual memory constructs a distributed shared memory using standard
address translation hardware to control memory access on each node. If a node has a copy of
a shared data page, it is mapped into the address space on that node; if a node has no copy,
the virtual page is not mapped. Multiple read-only copies are easily supported using the page
protection facilities. Program accesses that require a data transfer to acquire a valid or exclusive
copy are signaled as page faults. Unfortunately, relying on address translation hardware alone
restricts the granularity of coherence to at least the virtual memory page size.

The shared-memory machines we wish to model maintain coherence at a finer granularity,
typically tens of bytes rather than thousands. We have synthesized the ability to tag each 32-
byte block in physical memory as invalid, read-only, or writable (see Section 2.3). Using these
tags in combination with the address translation hardware, we implement a distributed shared
memory that maintains coherence at a 32-byte granularity. The first reference to a shared page
causes a page fault, as with shared virtual memory. We allocate and map a physical page, but
initially mark each cache block invalid. Cache blocks are marked valid (read-only or writable)
only as they are referenced. Accesses to invalid blocks (and writes to read-only blocks) cause
faults, and initiate software that fetches the data and marks the block valid. The distinction
between read-only and writable tags allows read replication at the cache block granularity.

WWT uses this fine-grain shared virtual memory to directly execute shared-memory applica-
tions as they would execute on a cache-coherent target machine. A context is allocated for each
target node; the shared data accessible from this context reflects the contents of the simulated
cache on that target node. Page and tag faults correspond to target cache misses, which invoke
WWT and are handled according to the target’s coherence protocol. Large target systems are
studied by allocating several contexts per host node and multiplexing their execution.

2.3 Memory tags

To implement fine-grain shared virtual memory, blocks in memory must have three states: in-
valid, read-only, and writable. Any access to an invalid block and write accesses to read-only
blocks must provide restartable exceptions. To achieve this functionality, we have logically
extended the CM-5 architecture to support two additional bits of information—writable and
invalid—per 32-byte physical memory block.

Although memory tags with access semantics have appeared in numerous machines, e.g.,
the Denelcor HEP [15], most contemporary commercial machines—including the CM-5—do not
provide this capability. However, we are able to synthesize an invalid tag on the CM-5 by forcing
uncorrectable errors in the memory’s error correcting code (ECC) via a diagnostic mode. Using
the SPARC cache in write-back mode causes all SPARC cache misses to appear to the memory as
cache block fills. A fill that encounters an uncorrectable ECC error generates a precise exception.

Synthesizing a read-only state is more convoluted, since it requires using the page tables
to make entire pages read-only. On a write fault, we must distinguish between a write to a
read-only block and a write to a writable block that resides on the same page as one or more

read-only blocks. We make this distinction by maintaining a bit vector—one bit per block—to
indicate whether the block is writable. The write fault handler checks this bit; if set it performs
the write and resumes the application, rather than signaling a fault.

Memory tags introduce extra state—two additional bits per 32-byte block—making paging
and swapping more complex to implement. The tag bits make the “extended” physical page
no longer a power of two, causing a mismatch with typical disk block sizes, and requiring more
bookkeeping and I/O operations. In addition, since memory tags are unused for many pages, e.g.,
text and non-shared data, any overhead maintaining them is wasted. The executive interface
reduces the kernel’s complexity by shifting responsibility for maintaining memory tags to the
executive.

3 The executive interface

The executive interface provides an ezecutive—an untrusted user-level process—with protected
access to memory management functions. An executive can use the interface’s memory man-
agement calls to create subservient contexts (address spaces), and exert complete control over
them, including adding, modifying, and deleting page-level mappings. An executive can invoke
execution within a subcontext, and regain control on all faults and exceptions. Page motion
callbacks not only give the executive limited control over physical memory management, but
also shift certain responsibilities out of the kernel, greatly reducing kernel state and complexity.

A primary goal of the executive interface is to minimize kernel state and complexity. Beside
the aesthetic appeal, keeping most of the code and complexity at user level makes bugs less
catastrophic and easier to eliminate. In addition, because we are modifying a continuously
developing system, minimizing and isolating the kernel source changes makes it easier for us to
keep up with vendor revisions.

A particular challenge is maintaining the address mappings and memory tag values installed
by an executive in the face of paging/swapping activity by the kernel. The brute-force solution is
to have the kernel remember all of the mapping requests made by the executive and transparently
maintain them when a page is swapped out and back in at a different physical address, and to
transparently swap tag information as well as page data. We have solved this problem with
greatly reduced kernel state and complexity using page motion callbacks. These callbacks allow
the kernel to notify an executive immediately before a page is to be swapped out and immediately
after it is swapped back in so that the executive itself can maintain address mappings and tag
values.

Another requirement is to avoid trusting the executive. A fully protected interface makes the
system robust through even the earliest phases of executive development, and means that normal
users have the ability to write or modify executives. A protected interface also makes other sites
more willing to adopt our kernel so that we can distribute the Wisconsin Wind Tunnel. Two
features of the interface contribute to this protection:

e The executive cannot even refer to resources not explicitly allocated to it by the kernel.
The executive never sees physical addresses or hardware context numbers.

e The kernel guarantees that the executive never has an alias to a physical page it does
not own by maintaining a count of aliases for each physical page. If the executive does
not decrement this count to zero by deleting mappings before a page is removed from its
control, the kernel will terminate it.

int create_ctx();

void *executive_brk(void *new_brk);

void *executive_sbrk(int incr);

void *executive_vbrk(void *new_brk);

void *executive_vsbrk(int incr);

int add_mapping(int cd, void *va, void *pp, int attr);
int change_pg_attr(int cd, void *va, int attr);

int delete_mapping(int cd, void *va);

void jump_to_ctx(int cd, struct regs *p, void *stackp);

(a) General kernel calls

int set_page_motion_cbs(void *(*page_going)(),
void (*page_coming)(),
void *stackp);

int set_ctx_fault_cb(void (*ctx_fault_cb)());

(b) Callback registration calls

void *page_going(void *pp);
void page_coming(void *pp);
void ctx_fault(int fault_code, struct regs *p, ...);

(c) Callbacks

Table 1: The executive interface. Parts (a) and (b) list the functions exported by the kernel. Part (c)
describes the callbacks exported by the executive.

Table 1 lists the calls and callbacks that comprise the executive interface. The kernel exports
the general calls and callback registration functions, while the executive exports the callbacks,
which it registers during initialization. The bulk of the interface is directly related to managing
virtual and physical memory. The remaining functions, jump_to_ctx() the ctx_fault() callback,
provide the ability to execute within subcontexts.

3.1 Memory management

The executive manages virtual and physical memory resources via the context management calls
and page motion callbacks. Pages managed by the executive are distinct from the executive’s
own text, data, and stack pages. This allows the kernel to easily distinguish the former for special
handling while manipulating the latter as it would for any other user process. For example, the
kernel can swap the executive’s text segment, share it among multiple instances of the same
executive, or allow a debugger to attach to an executive without interfering with the executive’s
memory management functions.

3.1.1 Context management calls

The context management calls allow an executive to create new contexts, allocate pages to map
into them, and add, modify, and delete page-level mappings. Using these calls, an executive has
complete control over these subservient address spaces.

The create_ctx() call allocates a new context and returns an integer context descriptor (similar

to a Unix file descriptor). We refer to these contexts as subcontezts when it is necessary to
distinguish them from the executive’s context. A new subcontext is completely empty, i.e. it
contains no valid address mappings (except for the kernel mappings required by the SPARC
architecture). Context descriptor 0 is never returned by create_ctx() and is used to indicate the
executive’s own address space. The notation cd:va refers to virtual address va in context cd.

To keep executive-managed pages distinct from kernel-managed pages, the executive allocates
pages from a special segment in the executive’s own context, the ezecutive-managed heap. The
executive_brk() and executive_sbrk() calls allow the executive to change the size of this segment in
the same way that CMOST’s Unix-like brk() and sbrk() work with the standard heap. Allocation
on the executive-managed heap is always rounded up to the next multiple of the page size, so
that an integral number of pages are allocated. The virtual addresses of these pages in the
executive’s context are the primary mappings (i.e., handles) which the executive uses to refer to
these pages across the kernel interface. Only pages in the executive-managed heap—referred to
as ezecutive-managed pages—may be aliased via add_mapping() or have their memory tag values
changed.

The ezecutive virtual heap allows the executive to manage a region of its own address space
the same way that it manages subcontexts. The executive_vbrk() and executive_vsbrk() calls
simply reserve a contiguous collection of virtual pages, but do not allocate physical pages behind
them. The executive can then alias these virtual pages to pages in the executive-managed heap
(possibly with different attributes, e.g. read-only or non-cacheable) without fear that the kernel
will grow the standard heap or stack to conflict. This call is not necessary for subcontexts
because the executive automatically has complete control of those.

The add_mapping() call creates a secondary mapping from virtual address va in context cd to
the page at virtual address pp, i.e. it aliases cd:va and 0:pp, where pp must point to an executive-
managed page. The mapping attributes (protection and cacheability) are set according to attr.
To prevent interference between the kernel and executive, if cd is zero then va must be in the
executive virtual heap. The alias count for the corresponding physical page is incremented.

The change_pg-attr() and delete_mapping() calls allow the executive to change the attributes
of and delete mappings, respectively. Only mappings created via add_mapping() can be modified
or deleted. delete_mapping() also decrements the physical page’s alias count.

3.1.2 Page motion callbacks

The two page-motion callbacks—page_going(), invoked when the kernel must reclaim an executive-
managed page, and page_coming(), invoked when a page returns—serve a dual role. First, they
allow the kernel and executive to cooperate in physical memory management, similar to the way
scheduler activations allow management of physical processors in a shared-memory multiproces-
sor [2]. By explicitly saving and restoring data in response to page_going() and page_coming()
calls, the executive can control exactly which data are resident in physical memory. Second,
the callbacks significantly reduce the kernel’s bookkeeping requirements, by giving the execu-
tive responsibility for maintaining secondary mappings and memory tags across physical page
movements.

The two page motion callbacks only affect executive-managed pages; the executive must
register the callbacks before allocating pages on the executive-managed heap. When the kernel
decides to reclaim an executive-managed page (e.g., to allocate it to a different process), it
notifies the appropriate executive using the page_going() callback. In general, the kernel will
call page_going() with the argument pp set to NULL, indicating that the executive can select any
executive-managed page for reclamation. The executive can apply its own replacement policy

and return the selected page-aligned pp as the return code. By default, the kernel discards the
page contents; however, the executive may request that they be saved (i.e. moved to backing
store) by overloading the return code (setting the least-significant bit to one). Occasionally,
the kernel may need contiguous physical pages—e.g., for the CM-5 vector units—requiring it to
reclaim a specific executive-managed page. In this case, the argument pp points to the selected
page, and only the least-significant bit of the return value is meaningful.

The executive must use delete_mapping() to delete all secondary mappings for the selected
page before returning, at which point the kernel removes the primary mapping from pp to the
physical page. Note that virtual address pp is still “in use” as it uniquely identifies this page
and will be provided as the argument to a future call to page_coming().

The kernel returns an executive-managed page via the page_coming() callback. The primary
mapping is recreated, i.e. the virtual address pp again maps to a physical page, though not
necessarily the same physical page as before the page_going() call. If the executive returned a
zero in the LSB on the previous call to page_going(), the page has been zeroed; otherwise, the
contents have been restored. In either case, the physical memory tags have been cleared. This
call allows the executive to restore any secondary mappings and/or memory tags for the page.
Secondary mappings could also be restored on demand.

These callbacks allow user-level management of physical memory: even when the kernel
reclaims a specific physical page, the executive can choose the data that get replaced at the
expense of additional copying and page-table manipulation. Alternatively, the executive can
let the kernel save and restore data in evicted pages. The executive can always regain access
to a “gone” page by dereferencing pp and causing a fault. The kernel will handle the fault by
obtaining a free page (possibly by calling page_going() on this or another executive), restoring
the old data (if necessary), and calling page_coming() to signal the return of the needed page.

Because the executive is untrusted, the kernel cannot rely on it to delete all secondary
mappings on a page_going() callback. Conversely, it must guarantee that these mappings are
removed—otherwise, the executive may retain an alias to a physical page re-allocated to a differ-
ent process. A brute-force solution is for the kernel to automatically delete all secondary map-
pings. However, this approach requires that the kernel maintain all of the reverse translations,
duplicating state already maintained by the executive. Instead, we require that the executive
delete all secondary mappings to the selected page before returning from the page_going() call or
face process termination. Process termination guarantees that all mappings are deleted, because
the process and all its sub-contexts are destroyed. Thus the kernel only need know how many
secondary mappings exist, but not their individual identities. A simple counter per physical
page, incremented on each add_mapping() call and decremented on each delete_mapping call, is
sufficient to maintain this state.

In addition, to protect against deadlock or infinite loops in the executive, the kernel requires
that all callbacks be completed within a fixed time. The kernel sets a virtual timer before
invoking a callback; if the timer expires before the callback returns the executive’s process is
terminated.

3.2 Execution management

Creating and manipulating address spaces is uninteresting without the ability to execute within
them. Two calls suffice to provide this functionality. The kernel call jump_to_ctx() causes the
current thread of execution to switch into the specified context. When the thread executing in
the subordinate context encounters a fault (either an instruction fault or an explicit software
trap), control resumes in the executive’s context via the ctx_fault() callback.

Because the jump_to_ctx() call continues the current thread in a different context rather than
creating a new thread, the contents of the register file are largely unchanged across the switch.
The struct regs structure passed as an argument to jump_to_ctx(), though implementation-
dependent, conceptually consists of only the program counter and stack pointer in the new
context and the original contents of the registers required to pass the three arguments of
jump_to_ctx() into the kernel.? The third argument, stackp, specifies a stack in the executive
context to use when ctx_fault() is invoked. From the executive’s perspective, jump_to_ctx() does
not return. After a thread passes through a jump_to_ctx() call, it is in a subordinate execution
context where all faults are handled by the executive.

When the thread executes a trapping instruction (either due to a fault or an explicit software
trap), control resumes in the executive’s context at the ctx_fault() entry point. The first argument
indicates the type of fault and the second passes back a pointer to the same structure originally
passed to jump_to_ctx(). The state saved is exactly the state required by jump_to_ctx(), so
supplying this buffer unmodified as the second argument to jump_to_ctx() restarts execution in
the other context at the faulting instruction.

Additional arguments are passed from the kernel to the executive depending on the type of
the fault—for example, an MMU fault will also provide the virtual address of the access and the
nature of the fault (invalid address, protection violation, etc.).

We have, to the greatest extent possible, separated thread management issues from this inter-
face. However, with the addition of thread management code, this simple interface is sufficient
for the executive to behave as a multiprogrammed operating system. Implementing a threads
package on top of this interface simply requires code to allocate and manage multiple stacks,
and to save and restore the registers not contained in the struct regs structure. For example, a
context switch is as simple as having the ctx_fault() handler save and restore the CPU registers
and call jump_to_ctx() with a different context descriptor and struct regs pointer. Separating the
thread and context abstractions gives the executive flexibility, e.g. to support a kernel thread
abstraction within its sub-contexts. If the underlying kernel provides a programmable timer
interrupt, the interrupt can be made to appear through the ctx_fault() entry as well, making the
multithreading preemptive.

The executive does not normally handle its own faults, except for those to the executive
virtual heap. Having the kernel handle the executive’s faults facilitates demand paging of the
executive’s text and data, and makes growing the executive’s stack the same as for any other
user process. If the executive wants to handle its own faults, it can call jump_to_ctx() with the
first argument set to zero (its own context). This creates a singular situation where the thread
is in a subordinate execution context—so faults still invoke the ctx_fault() callback—but not a
subordinate addressing context. If the executive decides that the kernel should handle a specific
fault, it need only retry the faulting instruction from within its fault handler. There is no danger
of a recursive call to ctx_fault() because any fault encountered by the executive’s handler will be
handled directly by the kernel.

Subordinate execution contexts cannot be nested because jump_to_ctx() is a system call
implemented as a software trap; “recursive” calls will show up in the executive via ctx_fault().
As with any other traps, system calls made in a subordinate execution context can be forwarded
to the kernel simply by re-executing the call in the executive. The only complication occurs with
pointer arguments, since the kernel will interpret these in the executive, rather than subordinate,
context.

20n the SPARC architecture, this structure also contains the NPC (to resume after faults in delayed branch
slots) and the condition codes (since these cannot be saved and restored from user mode).

Function Lines of C Function Machine
PN | CP Instructions
executive_{v}{s}brk add_mapping 187
Total, four calls 10 35 change_pg_attr 108
create_ctx 134 0 delete_mapping 123
Page table initialization | 17 11 jump_to_ctx 90
Process termination 90 0 ctx_fault 40
Page callback support 222 | 426 set_page_motion_cbs 7
Total 473 | 472 set_ctx_fault_cb 5
Total 520

(a) C language additions
(b) PN assembly additions

Table 2: Code added to CMOST to implement executive interface.

4 Implementation

We have implemented the executive interface in CMOST version 7.2 Beta 1. As shown
in Table 2, the entire interface required less than one thousand lines of C and just over 500
machine instructions. Only jump_to_ctx() and ctx_fault() required assembly-level coding; the
other functions were implemented in assembly to improve performance. Although the majority
of the additional code is in the PN kernel, most of the complexity lies in the CP portion. This
follows from the centralized structure of CMOST: the PN kernel implements only mechanisms,
while all policy decisions occur on the CP.

The executive interface requires very little additional kernel state. The PN kernel requires
a few additions to the process control block (PCB) and an array with an entry per physical
page. The PCB maintains the entry points and stack addresses for the callbacks and the struct
regs and stackp pointers from the last jump_to_ctx() call (for use in the subsequent ctx_fault()
callback). The array, indexed by physical page number, contains the alias count for each page
and a pointer field. The pointer field is used to maintain a linked list, whose head is in the PCB,
of all physical pages in the executive-managed heap to facilitate resetting the alias counts when
the executive process terminates.

We also added two new memory segments to every process: the executive-managed heap and
the executive virtual heap. Both segments have special semantics:

e Any time the CP decides to move a page in the executive-managed heap, it must first
invoke the executive’s page motion callbacks.

e Allocations in the executive virtual heap segment are not backed by physical memory.
This segment simply provides a region in the executive’s virtual address space that is
guaranteed not to conflict with regions used by the control processor. Also, faults to this
segment are always handled by the executive.

On the CP, two fields were added to the per-physical-page structure to record the process
ID and virtual address of each physical page that is allocated to an executive-managed heap
segment. This information is required to perform the page_going() callback when the physical
page needs to be moved.

Table 3 summarizes the performance of the executive interface calls, as measured using

10

Function Time? Function Time?
cycles (us) cycles (us)
executive_sbrk create_ctx 19K (575)
with CP communication add_mapping
alloc 1 page 1.6M (48 ms) no table allocation 359 (11)
alloc 100 pages 4.9M (148 ms) alloc level 3 table 1166 (35)
w/o CP communication | 20K (606) alloc level 2 & 3 tables | 2641 (80)
executive_vsbrk change_pg_attr 340 (10)
with CP communication | 1.4M (42 ms) delete_mapping 855 (26)
w/o CP communication | 20K (606) jump_to_ctx 180 (5)
set_page_motion_cbs 117 (4) ctx_fault 154 (5)
set_ctx_fault_cb 108 (3)

Table 3: Performance of executive interface calls on the CM-5.

the CM-5’s cycle counter and averaging tens of iterations.® The executive_{v}{s}brk() and cre-
ate_ctx() calls are implemented as full traps, where the user’s register windows are flushed,
execution switches to the kernel stack, and interrupts are re-enabled. All other calls are im-
plemented as “fast” traps, and execute without flushing any windows or re-enabling interrupts.
The overheads for the two types of traps are approximately 300 us and 3 us, respectively.

The callback registration functions simply store their arguments in fields in the process’s
PCB. No validation is required since illegal values can at worst cause an immediate fault on the
invocation of a callback, which will terminate the executive process.

4.1 Memory management

4.1.1 Context management calls

The executive_{v}{s}brk() calls are implemented in the same fashion as CMOST’s brk() and
sbrk(). The first node requesting a page generates a system-wide interrupt, which causes the
control processor to grow the appropriate segment on all nodes. Subsequent requests on other
nodes can be satisfied locally by returning pages from the now-larger segment.

The create_ctx() call allocates a SPARC hardware context number and an empty level-one
table (the SPARC has a three-level page table structure). A call to add_mapping() validates
its arguments, performs the page table insertion (allocating level two and three tables as nec-
essary), and increments the alias counter for the physical page. Both change_pg_attr() and
delete_mapping() validate arguments and do a page table walk, with the latter also decrementing
the appropriate alias counter. None of these calls require communication from the node to the
control processor.

Because the CM-5 node has a virtually-tagged writeback cache, delete_mapping() must also
flush data brought in using the deleted mapping. This requires iteratively flushing 128 cache
lines, causing it to take significantly longer than change_pg_attr().

3This information was derived using a pre-release version of CMOST (7.2 Beta 1 of Feb. 1993). Performance
on released versions may be significantly different.

11

4.1.2 Page motion callbacks

The page motion callbacks account for most of the design complexity. Our current implementa-
tion focused on minimizing changes in the CP code. As a result, our implementation is influenced
by several existing CMOST features:

e Swapping is supported, but not demand paging. All of a process’s pages must be in
memory before it is allowed to run.

e Memory management is performed entirely on the control processor, which assumes that
the memory maps of all nodes are identical. When the CP reclaims a page, it must select a
specific physical page and force all nodes to release it, even if there is no need for physical
contiguity. In other words, in this implementation, page_going() is never called with a
NULL argument because the CP cannot deal with different nodes freeing different pages.

e Both the PN kernel and the CP portion of CMOST are single-threaded, i.e. there is only
one stack in each. In addition, the PN kernel does not maintain any kernel stack state
across communications with the CP.

While this implementation satisfies our needs for WWT, and serves as a proof-of-concept for
the executive interface, the CP code requires more radical changes for a clean and efficient
implementation.

In CMOST, pages are freed for two reasons: 1) to satisfy an allocation request for a currently
executing process or, ii) to swap in an idle process. In either case, the CP performs the necessary
memory management operations while the PNs are idle, waiting for instructions to resume.
Page moves not requiring callbacks are performed immediately, but those requiring callbacks
are recorded and deferred. Before resuming the user process, the CP performs the deferred
callbacks, scheduling the affected processes (executives) as needed.

The callbacks are executed in the executive context by invoking the registered callback
function using the registered stack pointer. The callback cannot be run on the current process
stack because it could be in a different address space (i.e. if the process was suspended while
running in a subcontext). A fault in the callback will result in the executive’s termination. When
the callback returns, the PN kernel either executes another callback pending for this executive,
or waits for the other nodes to complete. Once all callbacks are done for this executive (across
all nodes), the scheduler is re-invoked to run the next executive with pending callbacks. When
all deferred callbacks have executed, the originally scheduled process can run.

Because the executive is scheduled for callbacks the same way it is scheduled for normal
execution, there are only a few constraints on callback execution. First, the callback cannot
allocate memory of any kind since this could create a circular dependency. Second, each callback
is provided at most one scheduling quantum; the executive is terminated if the quantum expires
during a callback. Third, the callback also cannot call any blocking kernel function, since this
would interfere with the callback timeout mechanism. Finally, the current implementation does
not allow the callback to use the CM-5 network interface. This last restriction is not inherent to
the architecture, but would add significant complexity and overhead for a feature our application
would not use.

Our implementation is designed to support swapping, but we have not yet tested this portion
of the code. However, the CM-5 vector unit architecture severely constrains physical memory
allocation, causing CMOST to frequently reallocate specific pages, moving data from one phys-
ical page to another. By treating these page moves as a swap out followed immediately by a
swap in, we have completely exercised the callback mechanisms.

12

Asynch.| Asynch. Asynch.
Synch. | Synch. | Appl. | Appl. Appl.
Appl. | Appl.

Executive Executive

Synchronous Microkernel

Figure 1: Mixed-model parallelism using the executive interface.

4.2 Execution management

The subordinate execution context is simply the same CMOST process executing with a different
trap vector and (perhaps) a different hardware MMU context. All trap vector entries, except
hardware interrupts, jump to the ctx_fault() kernel stub.

The jump_to_ctx() and ctx_fault() functions are implemented as “fast” traps, i.e. they execute
without re-enabling interrupts in a partial SPARC register window. In addition to loading state
from the struct regs structure, (or storing it in the case of ctx_fault()), both calls must change
the hardware context, manipulate the register window mask, and change the trap vector base
address. jump_to_ctx() requires ten extra instructions because it must read the processor status
register, mask in the desired condition codes, and write it back.

4.3 Other implementation issues

The executive needs to specify a stack for all interrupt or signal handlers, as it does for the page
motion callbacks, since the current process stack may not exist in the executive’s own address
space. We have not added this extension yet, but it would be simple to do so.

The cache controller used on the CM-5 node (Cypress 604) is a 64KB direct-mapped virtually-
tagged cache. The hardware will handle aliases that map to the same cache block, but cannot
guarantee consistency otherwise. To avoid cache flushing, aliases must be congruent modulo
64K. Rather than complicating the interface with this issue, we force the executive to deal with
it on its own. We have added an additional call to the PN kernel, int cache_flush_page(int cd,
void *pp), which flushes the specified page from the SPARC cache. This allows the executive to
make the tradeoff between keeping aliases congruent and performing cache flushes according to
its own needs.

5 Discussion

While the executive interface is interesting in isolation, it is more striking when considered
in the context of the CM-5 and CMOST. The resulting kernel structure is—we believe—unique.
In most microkernels designed for parallel systems, nodes are fundamentally autonomous. Co-
operation, e.g. for gang-scheduling, occurs as a policy at a higher level of abstraction. Our
extended version of CMOST turns this structure on its head: the control processor maintains
central, synchronous control of physical memory and scheduling. The control processor still
forces all processors to context switch simultaneously; however, some of the processes may now

13

be executives. Executives, because of the autonomy provided by the executive interface, can
schedule execution in their subcontexts however they choose. This flexibility can be used to
support applications or groups of applications which may benefit from more dynamic allocation
and scheduling policies (see Figure 1). Thus our extended CMOST provides autonomy on top
of synchrony, rather than the more traditional alternative of synchrony on top of autonomy.

The CMOST /executive structure was motivated by our implementation of the Wisconsin
Wind Tunnel on the CM-5. However, the resulting structure is arguably the right way to
structure an operating system for large-scale parallel machines. Efficiently supporting fine-grain
parallel applications requires a global perspective for resource allocation, because a page fault
or scheduling delay on one node can seriously impact the performance of the entire application.
Centralizing control, as in CMOST, makes global resource allocation significantly easier. For
example, CMOST’s guarantee that one user process runs simultaneously on all nodes allows
direct user access to the CM-5’s network interface hardware, avoiding costly system calls for
message operations.

Operating systems that fail to efficiently manage global resources will have a particularly
difficult time exploiting hardware features such as the CM-5’s control network [9], which performs
a global barrier or reduction in a few microseconds. Because hardware barriers are both cheap
and fast—they are essentially AND-gates—we expect them to appear in most future parallel
machines.* The operating systems for these machines must be able to exploit this hardware
to efficiently execute fine-grain data-parallel codes. We believe this may prove easier with a
synchronous microkernel structure, rather than a more traditional asynchronous kernel structure.

While the CMOST /executive structure supports timesharing among different execution mod-
els, a hierarchical control structure can integrate space-sharing as well. For example, a central
scheduler on a 128-node machine can reserve some time-slices for 128-node synchronous appli-
cations and some for 128-node applications or sets of applications with more dynamic executive-
managed scheduling. The remaining time-slices can be delegated to two other schedulers, each
of which can recursively do identical centralized scheduling within disjoint 64-node processor
groups.

In order for a single executive to manage multiple users’ applications, the executive must
be run with some additional privilege, e.g. as a Unix “setuid root” process, to access system
resources with the effective permissions of the user on whose behalf the current application is
being executed. Such an executive would also need a way to adjust its scheduling priority within
the kernel so that processing resources can be fairly allocated across all user jobs, whether they
are executing directly under the kernel or are one of several running under an executive.

6 Related Work

The interface described in this paper was motivated by the needs of the Wisconsin Wind Tunnel.
The centralized structure of CMOST, with all policy enacted on the control processor, was
insufficient to support the user-level fine-grain distributed shared memory needed by WWT.
The executive interface extends CMOST to provide nodes with limited autonomy in the way
they manage their virtual address spaces and physical memory. This interface is interesting from
two different perspectives: on its own, as a means of exporting memory-management functions to
the user of a uniprocessor; and in conjunction with CMOST, as a means of supporting multiple
models of application parallelism on a single machine.

“The Cray T3D also has hardware support for global barriers; barriers are actually faster than remote memory
operations on this machine [14].

14

6.1 Uniprocessor aspects

The executive interface provides a complete set of low-level virtual memory functions. The
interface is simpler and lower-level than the virtual memory interfaces of either Mach [12] or
Chorus [1], which both impose significant semantics on the use of memory. To the first order,
the executive interface merely exposes the underlying hardware mechanisms to the user in a
protected manner.

The executive interface is similar to the “inferior spheres of protection”, described by Dennis
and Van Horn [6]. Their execution model allowed processes to create subcontexts, initiate
execution within them, and handle any resulting faults. The primary difference is our page
orientation rather than their more general segments and capabilities.

More recently, Probert, et al, proposed SPACE, an object-oriented operating system [11].
SPACE allows applications to create, manipulate, and execute within spaces, i.e., address spaces,
thereby facilitating protected objects. However, SPACE is much more general than our interface,
allowing different “executives” to manage different parts of a single address space.

Appel and Li surveyed the most common uses of user-level virtual memory, and identified
the set of primitives needed by these applications [3]. The set includes primitives to modify
protection on pages and create aliases within an address space; however, they did not include
the ability to create new address spaces, nor get callbacks when pages are reclaimed by the
kernel.

Using page motion callbacks to manage physical memory allocation is analogous to using
scheduler activations to manage physical processor allocation [2]. Both provide the user with
notification of kernel allocation decisions so that the application can adapt knowledgeably to its
new circumstance. A key difference is that the page_going() callback notifies the user before the
page is taken away, while the scheduler activation model notifies the user after a processor has
been taken away. This adds some complexity to the page motion callbacks (i.e. the necessity
for the kernel to enforce a finite completion time), but reflects a fundamental difference between
memory and processors: it is reasonable to have the user allocate space to save a processor’s
state in case the kernel takes it away, but nonsensical to apply the same principle to memory
pages.

The Mach external memory manager interface is similar to our page motion callbacks. How-
ever, if an external memory manager does not remove a page in a timely fashion, the Mach kernel
can always write the page to backing store using the default memory manager. Our interface
does not permit this, because the kernel cannot clean up secondary mappings itself nor can it
permit them to point into another process.®

6.2 Multiprocessor aspects

User control over multiprocessor scheduling with the intent of supporting multiple models of
parallelism (including gang-scheduling) is provided in Mach by a processor allocation server [4].
In this model, an application requests a certain number of processors to create a “processor set”
to which threads can be bound. The binding of actual processors to processor sets is performed
by a privileged user-level server. The server can be modified to support site- or usage-specific
policies, but there can only be one per platform. In our scheme, a process requiring a fixed
number of processors can be handled simply by scheduling it at the appropriate level in the
hierarchy. A process with more dynamic needs could be served by an appropriate executive that

5Qur kernel could write the page to backing store, so long as it also saved and restored the memory tags and
guaranteed to return it to the original physical page before resuming the process.

15

balances its requirements by scheduling it in conjunction with other applications having similar
dynamic parallelism. The fundamental differences are that our model provides gang-scheduling
more as the rule than the exception, and allows for multiple executives running simultaneously
to support multiple abstractions.

The hierarchical integration of time- and space-sharing discussed in Section 5 is similar to
Feitelson and Rudolph’s distributed hierarchical control [7], except that they assume a hardware
hierarchy of control processors, while we believe a software hierarchy of control processes may
be just as effective. Also, their model does not have the executive interface to provide different
scheduling models underneath the global hierarchical structure.

7 Conclusion

The executive interface exports a complete, abstract model of virtual memory management to a
user process, including the ability to create, manipulate, and execute in multiple address spaces.
The interface allows the user process to participate in physical memory management using page
motion callbacks. The callbacks also serve to minimize the kernel complexity of implementing
the interface.

Giving a user-level executive the ability to define a complete virtual memory environment in
a protected fashion allows multiple executives providing multiple process abstractions to coexist
on a single system. Though interesting from a uniprocessor perspective, it is more significant
in the context of large-scale multiprocessors. Instead of having the operating system view the
machine as a set of autonomous nodes upon which coordination mechanisms must be imposed,
it can start with a global perspective and selectively delegate nodes in both space and time to
executives which allow increasing amounts of autonomy. The resulting structure combines the
advantages of centralization and decentralization: the underlying global perspective simplifies
efficient support of fine-grained synchronous (e.g. data-parallel) applications and management
of global resources such as barrier hardware, while executives provide the flexible support for
other application models that a completely centralized system lacks.

Acknowledgements

Mark Hill, Frans Kaashoek, Jim Larus, Bart Miller, Yannis Schoinas, and Marv Solomon pro-
vided helpful comments that greatly improved this paper.

References

[1] Vadim Abrossimov and Marc Rossier. Generic Virtual Memory Management for Operating System Kernels.
In Proceedings of the Twelveth ACM Symposium on Operating System Principles (SOSP), pages 123-136,
December 1989.

[2] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism. ACM Transactions on Computer
Systems, 10(1):53—-79, February 1992.

[3] Andrew W. Appel and Kai Li. Virtual Memory Primitives for User Programs. In Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS 1V), pages 96-107, April 1991.

[4] David L. Black. Scheduling Support for Concurrency and Parallelism in the Mach Operating System. IEEE
Computer, 23(5):35-43, May 1990.

[5] M. D. Canon, D. H. Fritz, J. H. Howard, T. D. Howell, M. F. Mitoma, and J. Rodriguez-Rosell. A Virtual
Machine Emulator for Performance Evaluation. Communications of the ACM, 23(2):71-80, February 1980.

16

[6]
[7]

(8]
[9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

Jack B. Dennis and Earl C. Van Horn. Programming Semantics for Multiprogrammed Computations. In
ACM Programming Languages and Pragmatics Conference, August 1965.

Dror G. Feitelson and Larry Rudolph. Distributed Hierarchical Control for Parallel Processing. IEEE
Computer, 23(5):65-77, May 1990.

Robert P. Goldberg. Survey of Virtual Machine Research. IEEE Computer, 7(6):34—45, June 1974.

Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N. Ganmukhi,
Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St. Pierre, David S. Wells, Monica C.

Wong, Shaw-Wen Yang, and Robert Zak. The Network Architecture of the Connection Machine CM-5. In
Proceedings of the Fifth ACM Symposium on Parallel Algorithms and Architectures (SPAA), July 1992.

Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM Transactions on
Computer Systems, 7(4):321-359, November 1989.

D. Probert, J. Bruno, and M. Karaorman. SPACE: A New Approach to Operating System Abstraction. In
Proceedings of the International Workshop on Object Orientation in Operating Systems, October 1991.

Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David Black, William J.
Bolosky, and Jonathan Chew. Machine-Independent Virtual Memory Management for Paged Uniprocessor
and Multiprocessor Architectures. IEEE Transactions on Computers, 37(8):896-908, August 1988.

Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C. Lewis, and David A. Wood.
The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel Computers. In Proceedings of the 1993 ACM
Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages 48—60, May 1993.

S. L. Scott. Personal communication, June 1993.

Burton J. Smith. Architecture and Applications of the HEP Multiprocessor Computer System. In Proc. of
the Int. Soc. for Opt. Engr., pages 241-248, 1982.

Thinking Machines Corporation. Connection Machine CM-5 Technical Summary, October 1991.

17

